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Abstract

Since the introduction of the SHACL standard, understanding its computational features and formal
foundations has become essential. Some research has focused on the semantics of recursive constraints
and the complexity of validation, but the satisfiability of SHACL constraints remains largely unexplored.
The most significant previous work in this direction is rather coarse, obtaining very few positive results
for finite satisfiability and for fragments with counting. In this paper, we build on description logics to
paint a comprehensive and fine-grained boundary for SHACL fragments with a decidable satisfiability
problem under the supported semantics, both for unrestricted and finite models.
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1. Introduction

Since the SHACL standard was introduced, the need for a solid understanding of its compu-
tational features and formal foundations has been apparent. Several works have leveraged
related logic formalisms to give semantics to recursive constraints, obtain complexity bounds,
and solve basic tasks including validation [1, 2, 3, 4], but little attention has been devoted to
the satisfiability of SHACL constraints. This problem is of major importance in the design and
validation of SHACL-based solutions: as SHACL becomes more popular, substantive efforts are
put into its adoption. As part of this, we witness mining SHACL specifications from data [5, 6, 7],
but how to assess the quality of these machine-generated constraints? And how to combine
multiple, possibly generated, specifications? We note that the basic necessary condition here is
compatibility, which boils down to satisfiability. A natural next step in assessing quality of data
is tackling containment, for which satisfiability is a prerequisite. This, we plan to study in further
work. Finally, both satisfiability and containment, as statistic analysis tools, are prerequisites
for more advanced services like optimisation, incremental validation and modularity.

Given the importance of the problem, there are remarkably few results concerning its decid-
ability and complexity. Indeed, the most notable work in this direction, [8], is very coarse. It
builds on a tailored fragment of predicate logic to identify decidability and complexity bounds,
but the basic logic it considers is already close to the boundary of what could potentially be
decidable in the presence of cardinality constraints. The positive results are mostly limited to
formalisms that do not support counting, and more often than not consider unrestricted (that is,
potentially infinite) graphs, even though finite graphs are a more relevant setting here.
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In this paper, we revisit satisfiability under the supported model semantics. We build on
Description Logics (DLs), a well-known family of languages for Knowledge Representation and
Reasoning that offers decades of research in the fine-grained study of logical fragments and the
effect that the interaction between different shapes of subformulas has on the complexity of
reasoning. The close relationship between DLs and SHACL is well-known, and in this paper, we
leverage it to paint a much finer boundary of SHACL fragments that have decidable satisfiability
problems, both over unrestricted graphs and over graphs with a finite domain.

Contributions. We build on the DL literature to pinpoint much tighter complexity bounds
than previously known for SHACL, based on the close connection between DL - and SHACL
satisfiability; we revisit this connection and explain how to translate complexity results in both
ways. To emphasise this tight bond, we provide a DL inspired naming convention: we write
Lg to denote the SHACL fragment similar to the DL £. Moreover, we add some lack of finite
model property results to the landscape: we show this for ALCg plus counting over regular
path expressions, which also provides an alternative undecidability proof; and, we show that
adding either eq(E, r) or disj(E, r) to ALCg also breaks the finite model property of ALCg.

Related Literature. There are two other theoretical papers considering satisfiability of
(recursive) SHACL [8, 9]. Both works are based on a translation of SHACL into a fragment of
first-order logic and transferring complexity results. A tool for testing SHACL satisfiability
based on this translation is presented in [10]. Our work differs in considering different fragments
by starting from a smaller base logic: the smallest logic considered in those works corresponds
to ALCZOg extended with universal roles. Another work considering the close connection
between SHACL and DLs for deciding complexity of reasoning problems, in their case shape
containment, is [11]. However, as pointed out in [12], there are some issues with their translation.

2. Preliminaries

Data Graphs and Interpretations. Let N¢o, N and Ny denote countably infinite, mutually
disjoint sets of concept names, role names, and individuals, respectively. Let Ng ={p,p” |p€
Nr} be the set of roles. For every p € Ny, set (p~)~ = p. An atom is an expression of the form
A(c) or p(e,d), for A € No,p € Ng and {¢,} C N;. An ABox (or data graph) A is a finite
set of atoms.

An interpretation is a pair Z = (A%, 1), where A7 is a non-empty set (called domain) and -~
is a function that maps every A € Ng to a set AZ C AT, every p € Ny to a binary relation
pr € AT x AZ, and every individual ¢ € Ny to an element ¢Z € AZ. Let (p~)% := {(c,¢) |
(c,d) € p'}. We call an interpretation Z finite when AZ is finite. We make the standard name
assumption, meaning ¢~ = c for all interpretations Z, and all ¢ € N;. The canonical interpretation
T4 of a set of atoms A is defined by setting AT4 = {c | A(c) € A} U {(c,c) | ple,c) € A},
ATa = {c| A(c) € A} forall A € N¢ and p?A = {(c,c) | p(c,c) € A} forall p € Np.

Description Logic ALCOZQ. An ALCOZQ concept C' is defined in the following way:
Cu=c|A|T|-C|CnC|CUC |>z,r.C|¥rC,



where ¢c € N;j, A € Ng,n > landr € NE. An ALCOZQ TBox T is a set of axioms
of the form C' C D, for C' and D ALCOZQ concepts. We use C' = D as a shorthand for
C C Dand D C C. An interpretation Z is a model of 7 if for all C = D € T we have
CT C DZ, where C7 is recursively defined as: (=C)* := AT\ CZ, (Cn ')t := T nCH,
(cucht :=ctuc?, (z,r.C)r :={cc AT ||{c € AT | (¢,d) € v, € CT}| > n} and
(vr.C)E :={c € AT | (¢,¢) € rT — ¢ € CT}. A concept C is satisfiable w.r.t. a TBox T if
there exists a model Z of 7 such that CT # ).

Recursive Shape Constraint Language (SHACL). Let Ng be a countably infinite set of
shape names, disjoint from N;, Nr and N¢. We define shape expressions, following [13], but
adding recursion, in the following way

pi=s|c|A|T| ¢ eAg|>uBp|eq(B,r) | disj(E,r) | closed(R),

where s € Ng,c € N;, A € No,n > 1, R a finite subset of N;{ and F a regular expression
given by
E:=r|E*"|EocE|EUE,

for r € N};. Here, (E*)” corresponds to the transitive closure of EZ, (E o E')? := {(c, ) |
(c,d) € EX,(d,c) € E'},and (EUE')T := ETUE"”. We use EE' as a shorthand for Eo F/,
and ET for EE*. We set o V ¢’ := =(=p A —¢') and VE.p := = >1 E.—. A shape constraint
is an expression of the form s < ¢, for s € Ng and ¢ a shape expression. With C, we indicate
a set of shape constraints. For each s < ¢, let s be the head of the constraint. In each C, we
assume each shape name s only appears as the head of one constraint - this does not influence
expressivity as vV’ may be used.

A shape atom is an expression of the form s(c), for s € Ng and ¢ € N;. A shape assignment S
is a set of shape atoms. Given an interpretation 7 and a shape assignment S, we say a individual
¢ € Ny validates a shape expression @, whenever ¢ € ()59, where ()59 is recursively
defined in Table 1. Given some C, we say c validates s € Ng, if ¢ validates ¢ for all s +— ¢ € C.
Let G be a set of targets of the form s(c), which we call atomic targets, or s(A), for s € Ng,
c € Nrand A € N¢. A pair (C,G) is called a shapes graph. In this paper, we consider the
supported model semantics; given an interpretation Z, we say Z validates (C,G) when there
exists a shape assignment S such that if s < ¢ € C, we find s7¢ = (¢)2 and for all 5(c) € G,
we find c validates s, and for all s(A) € G, all individuals in A validate s. Different semantics
require different constraints for the shape assignments. For readability, we will write .4 validates
(C,G), for a set of atoms A to mean that the canonical interpretation Z 4 validates (C, G).

3. SHACL Satisfiability

In this paper we study the following reasoning problems:

Satisfiability: Given a SHACL fragment Lg, for each shapes graph (C, G) expressible in Lg,
decide whether there exists an interpretation 7 that validates (C, G).

Finite Satisfiability: Given a SHACL fragment Lg, for each shapes graph (C, G) expressible
in Lg, decide whether there exists a finite interpretation Z that validates (C, G).



TS = Ny st ={ce AT | s(c) € S}
IS~ {cT) ()PS5 = AT\ ()7
AI,S — AI (Sp A (p/)I,S — (@)I,S N ((p/)I,S
GnE@)t% ={ce AT | |{¢ € AT | (c,d) € ET,c € "5} > n}
(eq(E,r) 2% ={ce AT |{c € AT |(c,d') € BT} = {c' € AT [ (c,c) €r}}
(disj(E,7))° = {c€ AT [ { € AT | (c,¢) € EF}n{c' € AT (c,c) €17} =0}
(closed(R))T% = {ce AT | {r e Nt \ R | (c,d) erT} =0}

Figure 1: Evaluating shape expressions

We also study the following property, which guarantees that these problems coincide:

Finite Model Property: A SHACL fragment Lg has the finite model property iff for every
shapes graph (C, G) expressible in Lg, we find that if (C, G) is satisfiable, then (C, G) is
finitely satisfiable.

Clearly, having the finite model property extends to less expressive fragments, whereas
the opposite, not having the property, spreads to subsuming fragments. Similarly, for (finite)
satisfiability, membership of a complexity class spreads to less expressive fragments, and
hardness to the more expressive ones. In case a fragment has the finite model property, the
membership results for general satisfiability extend to the finite setting.

The above presented problems are not the only ones one might consider: in [9], also another
flavour of the SHACL satisfiability problem is discussed: constraint satisfiability. This corre-
sponds to the satisfiability problem when the constraint set only consists of one constraint, and
with no extra restrictions on the target set G. As already noted in [9], the constraint version of
the problem clearly reduces to the general version, which means upper bounds for complexity
are preserved. We show here that for recursive SHACL also the other reduction holds. First, we
note that for satisfiability purposes, we may restrict the form of the targets.

Lemma 1. For each shapes graph (C,G) there exists a shapes graph (C',G’) such that G’ only
consists of atomic targets and for each model T we have T validates (C,G) iff Z validates (C',G’).

Proof. Assume that for some concept name A € N¢, s(A) € G. It suffices to replace each
occurrence of A inC by (A A s), and remove s(A) from G. In this way, we enforce that each
node with an A-label, essential in the validation of another constraint, also validates s. O

Proposition 1. In recursive SHACL, the problems of deciding SHACL satisfiability and constraint
satisfiability are mutually reducible.

Proof. We use ‘@ <> 1)’ as a shorthand for (¢ — ¥) A (¢ — @), and ‘¢ — 9’ for = V1. Given
a shapes graph (C, G), such that all targets in G are atomic. We distinguish two cases.

In case the considered SHACL fragment does not contain nominals, satisfiability of (C, G)
is equivalent to satisfiability of all (C, G..) separately, where G. := {s(c) € G}, forall c € N;
such that c appears in G. Furthermore, note we may replace multiple targets using the same ¢
by a single target s(c) for some fresh shape name s, given we add s < A s(c)eg s’ to the set of
constraints. Thus, we further assume that G = {s(c)}.



Name Syntax  Symbol

Nominals c O
Inverses r- 7
Functionality <ir.T F
Unqualified number restriction >,r.T N
Qualified number restriction >aT.Q Q
Unqualified regular path counting >, E.T &
Qualified regular path counting >nE.p P

Table 1
Fragments of SHACL following the DL naming convention, extended with counting over regular paths.

The next step is to encode all constraints within a single one: satisfiability of (C, {s(c)}) can
be reduced to satisfiability of ({$ < ¢}, {5(c)}), for a fresh shape name $, and @ defined in the
following way:

gb::s/\V(I_I r)*. /\ (s < o),

reR s'<—peC

where R C N;[ contains all roles appearing in any constraint in C.

In the case the SHACL fragment does contain nominals, the above described reduction to
single-element targets may no longer be sound. Instead, we use the nominals in the newly
defined constraint in the following way: satisfiability of (C,G) may be reduced to satisfiability
of ({8 < ¢},{5(c)}) for each ¢ € Ny appearing in G, such that

@::V(I_Ir)*. /\ (c—s)A /\ (s < ),

reR s(c)eg s<—pel

where R C N}J{ contains all roles appearing in any constraint in C. O

Names for fragments of SHACL. Let ALCg be the fragment of SHACL such that shape
expressions ¢ are of the form:

pu=s|A|T|=p|oAp|pVe|Ire|Vre,

for r € Ng. Let 3r.¢p be a shorthand for >; r.¢. Partly following the naming convention of
Description Logics, we identify the SHACL fragments in the way presented in Table 1. We
write £LXg to denote the SHACL fragment by extending L£g with the features described by
some X C {O,Z,F,N, Q,&,P}. With the superscript L, we denote that the feature eq(r, r’),
for {r,r'} C N is added to the fragment £. Similarly, £¢ corresponds to adding the feature
disj(r, '), also for {r,r’} C Npg. In case the fragment £ contains the letter Z, {r,r'} C N}

Note that adding closed(R) does not increase the expressivity of ALCg. Introducing > F.¢
does increase expressivity of ALC in the supported model semantics, but not in, among others,
the least-fixed point semantics [14].

Lemma 2. For each shapes graph (C,G) expressible in ALCg extended with expressions of the
form closed(R), there exists a constraint set C' expressible in ALCg such that (C, Q) is (finitely)
satisfiable iff (C', G) is (finitely) satisfiable.



fle):=c g(e)=c

f(A) =54 g(A) == A, g(s) = A

f(M) =T g(T) =T

f(=C) == =f(C) 9(—p) = —g(p)
fcne’) = f(C)nf(e) gleN¢') = g(p) Mg(¢')
fcuc) = f(C)v f(c) gl V') = glp) Ugly)
f(Enr.C) =>,1.f(C) g(Znrp) = >nr.g(0)
f(vr.C) :=Vr.f(C) g(Vr.p) == Vr.g(¢)

Figure 2: Translation functions mapping ALCOZQ concepts into ALCOZ Qs shape expressions, and
vice versa.

Proof. Since we are in the restricted context of SHACL satisfiability, that is, roles not men-
tioned in the constraints are irrelevant, we may replace each occurrence of ‘closed(R)’ by
Tlrege 73T, where R := {r € Ng \ R | r appears in C}, to construct C'. O

4. SHACL to OWL and back again

Most of the results in this work are based on the tight connection between SHACL and DLs. In
this section, we look at their connection and provide a translation for satisfiability purposes.

Translation. We note that for ALC and more expressive DLs, it is immediate that we can
restrict the logic to equivalence axioms only, without affecting its expressivity. That is, C' C D
may be replaced by T = —~C'U D. In these cases, we may also assume without loss of generality
that one side of the equivalence is a concept name: it is always possible to introduce a fresh
concept name as middle ground. Furthermore, we note that when considering satisfiability
of a concept name A w.r.t. a TBox T, we can reduce axioms of the form T = C to A¢ =
Ll,cr Vr.(AcT1C), where R C N} contains all roles appearing in 7. In this case, we find that A
is satisfiable w.r.t. T iff AT Ac is satisfiable w.rt. (TU{A¢c = ||,z Vr.(AcNC)H\{T = C}.
That is, in this paper, it will be sufficient to consider axioms of the form A = C,for A € No\ T.
Moreover, we assume that each considered TBox 7 contains for each A € N¢ at most one
concept C, possibly making use of ‘L/’, such that A = C' € T. As we set s + ¢ € C implies
(5)55 = (p)15, this aligns well with the semantics of recursive SHACL we are considering.

Let us define two translations: f, a function translating any ALCOZQ concept into a
shape expression, and g, a function in the opposite direction, translating any shape expression
expressible in ALCOZ Qg into an ALCOZQ concept. These functions are recursively defined
in Table 2, where s4 € Ng is a fresh shape name introduced for every concept name A € N¢,
and A, is a fresh concept name for each s € Ng. Note that fragments are preserved: an Lg
shape expression translates into an £ concept, and vice versa.

Proposition 2. Let T be an ALCOZQ TBox such that all axioms are of the form A = C, and
such that no pair {B = C, B = C'}, for C # C' is contained in T. Then, T is a model of T such
that AT () iff T validates (C,G) given by G = {sa(c) | c € AT} and

C={sa+ f(CONA|A=CeT}U{sa+ A|A=CE&T}.



Proposition 3. Let (C,G) be any ALCOZQg shapes graph such that G only contains atomic
targets. Then T validates (C,G), because of the shape assignment S, iff ' is a model of { A =
g(p) | s < @ € C}, such that if s(c) € G, thenc € AZ. Here, T' has domain AT = AT’ and is
further defined as: forall A € No \ {As | s € Ng}, AT = AT and forall A € {A, | s € Ng},
AT = {ce Ny | s(c) € S}.

Note that correctness of both propositions is based on the fact that shape and concept names
can be considered as very similar, namely as unary labels for individuals, in the setting of
determining (finite) satisfiability.

Joint Satisfiability of SHACL and OWL. As envisioned in the W3C SHACL specification
[15, Section 1.5] and argued in [3], it is promising to combine SHACL and OWL (under the
unique name assumption), another prominent W3C standard for managing data, whose profiles
are based on DLs [16]. Combining these formalisms gives rise to a whole new set of challenges,
like how to reconcile the open- and closed-world semantics these specifications bring along
[3, 17]. Fortunately, the semantics proposed in [3] and [14], i.e., SHACL validation over the core
universal model of the A- and TBox, can be reduced to plain SHACL validation [3, 14]. Also
the complexity of validation is discussed there. However, nothing is known regarding joint
satisfiability of SHACL and OWL, that is, the following reasoning problems.

Joint Satisfiability: Given a SHACL fragment £g and OWL fragment £’, for each shapes
graph (C, G) expressible in Lg and each TBox 7T expressible in £’, decide whether there
exists an interpretation Z that validates (C,G) and is a model of 7.

Finite Joint Satisfiability: Given a SHACL fragment L£g and OWL fragment £’, for each
shapes graph (C, G) expressible in Lg and each TBox 7 expressible in £', decide whether
there exists a finite interpretation Z that validates (C, G) and is a model of 7.

Given the above presented translation, it follows that the complexity of deciding (finite) joint
satisfiability of SHACL in presence of OWL corresponds to the complexity of deciding (finite)
satisfiability in the least-expressive description logic capturing the expressivity of both the
translated SHACL fragment, as the OWL fragment.

5. Inverses, Nominals and Counting

The following propositions are well-known results in the Description Logic community. These
results extend to our setting, using a translation as described in the previous section.

Proposition 4 (for instance [18, 19, 20]). ALCOZg and ALCO Qg have the finite model property,
ALCIZFs does not.

Proposition 5 ([20, 21], and their references). Deciding (finite) satisfiability in ALC s, ALCOZg,
ALCOQg, and ALCI Qg is ExPTIME-complete.

Proposition 6. Deciding (finite) satisfiability in ACCOZFs and ALCOZLQg is NExPTIME-
complete.
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Figure 3: Infinite grid that, after adding s and s, as label to every node, shows satisfiability of s. The
red diagonal arrows denote the role d.

The lower bound for ALCOZFg follows from constructing a torus of finite size [22]; the
upper bound from translating ALCOZ Qg into the two-variable fragment of first-order logic
with counting quantifiers C? [23], in which (finite) satisfiability is NExpTIME-complete [24].

Proposition 7. ALCEg and ALCPs do not have the finite model property.

Proof. Consider the following constraints, with the target s(0, 0):

s Vut. =1rTd. T AV(ruu)*.(ss A sg)
sf—=1uTA=1n.TA=1(ruUur).T
Sg ¢+ >1d. T VVut.—~>1d.T

Here, =1 .¢ is a shorthand for > .0 A <j .. Clearly, a way to satisfy the above constraints is
in a simple grid on the natural numbers with a diagonal, where s true in (0,0) and s and s,
validated everywhere. Here the interpretation of d is {(4,4), (i + 1,7+ 1) | ¢ € N}, for u it is
{(Girg), Girj + 1) | {i, 7} € N}, and for 7 the set {((3,), (i + 1,)) | {i,j} € N

Assume for contradiction there exists a finite model. As sy must hold in s and every indi-
vidual reachable by u, there exists aq, . .., a; such that ag is reachable by «* from (0, 0) and
{(ap,a1),...,(aj-1,a;), (a;,ap)} is contained in the interpretation of u. Note that because of
having to validate =1 . TA =; (ru U ur).T in every individual reachable by r or w, it can
be concluded that the set of individuals {by, ..., b;} reachable by r from any individual in
{ao, . ..,a;} must also contain a loop in the interpretation of u. Clearly, this generalises to:
every individual reachable by 7+ from any individual in {ao, . .., a;} has a u™-path leading to
itself. As every individual appearing in a loop of «’s cannot have an outgoing d-edge, because
of the constraint sy < =>1d. T V Vut.—>1d.T, it follows that every individual reachable by
r* from any individual in {ay, ..., a;} cannot have an outgoing d-edge. As all individuals in
{ag,...,a;} are reachable by u™ from (0, 0), we cannot validate the first conjunct of s in (0, 0).
This is the contradiction which concludes the proof. O

Note the above proof produces a grid, which means only a few more rules need to be
introduced to reduce the undecidable domino problem [25] to ALCEg. It is easy to check this
is possible, making the satisfiability problem undecidable. This result is already known for
different sublogics of ALCEg, which is discussed in the remainder of this section.
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ALCLg ALCOs ALCQs ALCNg ALCFs
ALCPs ALCEs

ALCIOg ALCIQgs ALCOQs ALCIN | Fs ALCON | Fg

ALCOIQg ALCOIN ALCOLFg

Figure 4: Decidability and complexity of SHACL fragments. Ellipse-shaped nodes denote (finite)
satisfiability is decidable in ExpTIME (yellow border), or NExPTIME (green border). Squared-shaped nodes
indicate satisfiability is undecidable. A yellow filling indicates the presence of the finite model property,
whereas a red filling stands for the lack of it. Arrows indicate subsumption of fragments.

More Fine-Grained Analysis. In the following, we will restrict the expressivity of the regular
expressions used in >, E.T and >,, E.p. That is, with ALCN (X)g or ALCQ(X)g, for X
any combination of the role constructs *, o and U, we denote the SHACL fragment allowing
regular expressions build from only the role constructs in X in number restrictions. That is,
ALCN (x,0,U)s = ALCEg and ALCQ(*,0,U)s = ALCPgs. We note that the translation
presented in Section 4 naturally extends to also capture *, o and U in the number restrictions.
Again, we can rely on the vast DL literature: the derived complexity results are the following.

Proposition 8. Satisfiability in ALCN (o)g is undecidable.
This is a direct consequence of Theorem 6 in [26].
Proposition 9. Satisfiability in ACCN (x,U)g is undecidable.

Proof. We can adapt the undecidability proof of unrestricted SHN in [27] in the following way.
That is, instead of using the hierarchy and the given axioms, we consider the following shape
expressions.

*

s4  —sg A—sc A=sp AJxy.sp AJyr.so A <s(x1 Uy

*

*

)T
sp < 854 A —sc A—sp A Jwa.sa A Jyr.sp A <g(xaUy1)*. T
sc  sAa A—sg A—sp AJxi.sp A Jya.sa A <g(x1 Uys)*. T
Sp < =84 A—sp A—so A Jxa.so A Jya.sp A <g(xaUys)". T
Note that satisfiability of s 4(c) corresponds to existence of a grid. Now it is easy to check we

can encode a domino tiling problem like in [28]. Thus, the undecidability of the domino problem
transfers to this logic, which concludes our proof. O

Deciding (finite) satisfiability in ALCQ(U)g is ExpTIME-complete. This result is subsumed
by Proposition 12 in the next section.



6. Equality and Disjointness

Recall we introduced the superscripts £ and £¢ to denote the addition of the features disj(r, )
and eq(r, 1), respectively. Following the naming convention introduced in the previous section,
for X any combination of the role constructs *, o and U, let £(X)?, resp. £(X)¢, be the
SHACL fragment allowing regular expressions build from only the role constructs in X in the
disjointness, resp. equality feature, and in number restrictions, in case N or Q is contained in
L. That is, recursive SHACL as introduced in the preliminaries, and for satisfiability purposes,
corresponds to ALCOZQ(x, o, U)g’e.

We start with a positive result: adding disjointness does not increase complexity, although
the finite model property is easily lost.

Proposition 10. Deciding satisfiability in ACCZ(x, 0, U)$ is ExpTmme-complete, and this frag-
ment does not have the finite model property. In fact, ALC (x, o)g already lacks this property.

Proof. The upper bound follows from Theorem 4.8 in [29]. To see this, note that disj( £, r) is
equivalent to the expression V(E N 7). L. As the amount of nestings of ‘N’ in this expression is
bounded by a constant, namely 1, the tighter upper bound of ExpTIME can be derived.

For the lack of finite model property, consider the following shapes graph (C, G):

C = {s « disj(rr™,r) A Ir.s}

and set G = {s(a)}. Clearly, the infinite chain of 7’s, in which every individual is labelled with
an s is an infinite model. In fact, it must be possible to homomorphically map this chain into
any interpretation that validates (C, G). As disj(rr™, r) has to be true in each individual on the
chain, it suffices to check that each approach to loop this chain breaks the disjointness. O

Even though equality and disjointness might appear to be duals, this belief is quickly crashed:
equality is much harder and easily leads to undecidability.

Proposition 11. Deciding satisfiability in ALC(0)$ is undecidable and ALC(x,0)g does not
have the finite model property.

Proof. The undecidability result directly follows from results for Description Logics with role
value maps [30]. An easy way to also see why the equality feature leads to undecidability is the
following constraint set, which encodes a grid.

s < eq(ur,d) Aeq(ru,d) A 3r.s A Ju.s AVr.s AVu.s
For the lack of finite model property, consider the following shapes graph (C, G):
C = {s < eq(r*,t) A—eq(r™,t) A 3r.s},

and set G = {s(a)}. Clearly, the infinite chain of r’s, with ¢ the reflexive and transitive closure
of r, in which every individual is labelled with an s is an infinite model. In fact, it must be
possible to homomorphically map this chain into any interpretation that validates (C, G). As
eq(r*,t) A —eq(r*,t) has to be true in each individual on the chain, it suffices to check that
each approach to loop this chain breaks successful validation. O



It looks much better when solely allowing ‘U’ in the equality and disjointness axioms: (finite)
satisfiability in ALC (U)g’e is ExpTIME-complete. In fact, this holds for much stronger fragments.

Proposition 12. Deciding satisfiability in AECIQ(U)g’e, and (finite) satisfiability in

AECOQ(U)g’e and .AECOI(U)‘;’e is ExpTIME-complete, and the latter two fragments have
the finite model property.

Proof. Note that for R a union of roles, eq(R, ) may be reduced to V((R\ r) U (r \ R)).L,
where £\ E' := EZ\ E'%, and disj(R,r) to V(RN ). L. Thus, in case only ‘U’ is allowed, the
equality and disjointness features reduce to simple roles, which means the above fragments can
be reduced to the description logics ZZQ, ZOQ, resp. ZOZ. For all these logics, satisfiability
is known to be decidable in ExpTIME [31]. Furthermore, ZO O, and ZOZ have the finite model
property [32]. O

We note that the results described in this paper do not provide a complete picture of all
known decidability results in the DL setting.

7. Conclusion and Outlook

We looked at the tight connection between Description Logics and SHACL. In this way, we
derived many new complexity results for deciding (finite) satisfiability in SHACL. Specifically,
for the general satisfiability problem the picture looks quite complete: as far as the author
knows, only some small fragments remain unclear, like ALC(x,U)g, or ALC (*)g’e. However,
when looking at finite satisfiability, the status is quite the opposite: a lot of work remains to be
done. Specifically in the setting of SHACL, one of the standard tools for managing concrete
data sets, the latter case is of uttermost importance.

Another direction for future work is to look at different semantics: in this paper, we considered
(finite) satisfiability under the supported model semantics. However, there are more possibilities
to consider: for instance the stable-model, or well-founded semantics. As far as the author
knows there are no known complexity results regarding satisfiability or containment for any
semantics other than the supported model semantics, leaving a major gap. Specifically, as
researching complexity of satisfiability and containment problems is essential for determining
which semantics are suitable in optimised SHACL-based solutions.
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