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Abstract

SHACL and OWL are two prominent W3C standards for managing RDF data. These
languages share many features, but they have one fundamental difference: OWL, designed
for inferring facts from incomplete data, makes the open-world assumption, whereas SHACL
is a constraint language that treats the data as complete and must be validated under the
closed-world assumption. The combination of both formalisms is very appealing and has been
called for, but their semantic gap is a major challenge, semantically and computationally. In
this paper, we advocate a semantics for SHACL validation in the presence of ontologies based
on core universal models. We provide a technique for constructing these models for ontologies
in the rich data-tractable description logic Horn-ALCHZQ. Furthermore, we use a finite
representation of this model to develop a rewriting technique that reduces SHACL validation
in the presence of ontologies to standard validation. Finally, we study the complexity of
SHACL validation in the presence of ontologies, and show that even very simple ontologies
make the problem EXpPTIME-complete, and PTIME-complete in data complexity.
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1 Introduction

The Shape Constraint Language (SHACL) [33] and Web Ontology Language (OWL) [31] are two
prominent W3C standards for managing RDF data, the graph-based data model of the Web [32].
These standards are based on fundamentally different assumptions and designed to be comple-
mentary. OWL was standardised shortly after RDF, with the key aim of enhancing RDF datasets
with domain knowledge that enables the inference of missing facts from potentially incomplete
data graphs. OWL and its profiles are based on Description Logics (DLs) [6] and, like other
classical logics, make the open-world assumption (OWA), which intuitively means that the data
only presents an incomplete description of the domain of interest: it asserts facts that are known
to be true, but does not rule out that additional facts may also be true, as long as they are con-
sistent with the current world description. OWL has been adopted in a wide range of applications
over the years, and thousands of OWL ontologies have been developed. SHACL, in contrast, was
created for a different purpose: to describe and validate constraints on datasets. The main task
of interest is walidation of a given a set of constraints paired with a selection of target nodes or
concepts from a given graph. Unlike OWL, SHACL operates under the closed-world assumption
(CWA): it assumes that the given data graph is complete, and validators evaluate the constraints
over the input graph as is.

A natural question is how to do validation in the presence of both OWL ontologies and
SHACL constraints. That is, if we have a possibly incomplete graph and ontological knowledge
that implies additional facts, can we validate given SHACL constraints over graphs containing
the implied facts? Consider as an example a toy database of pet owners containing the facts
hasPetBird(linda, blu), hasPet(john, ace); the simple constraint petOwnerShape < FhasPet.T,
which says that everyone that has a pet is a pet owner; and the target pet owners linda and
john. Clearly, we would like to leverage the knowledge that all pet birds are pets, written as



hasPetBird T hasPet in description logics, which allows us to validate both targets. This type
of validation is very natural, even more so in the light of the huge amount of ontologies that are
already being used for describing data on the web. It is in fact envisioned in the W3C SHACL
specification, which calls for graph validation in the presence of OWL entailment [33, Section 1.5],
but unfortunately, does not provide guidance on how to realise this.

The first major challenge we must face is that the semantics of SHACL constraints in the pres-
ence of ontologies is not obvious, as we must simultaneously account for the open-world semantics
of description logics and for the closed-world view of SHACL. The knowledge in the ontology im-
plies additional facts, which can be added to the data graph so that it satisfies all the ontological
axioms. All such possible completions are models that must be taken into account according to
the traditional OWL/description logics semantics. However, SHACL allows for negation, which
makes this certain answer semantics too weak, and quickly results in non validation. Update for
example the toy database of pet owners we considered before to hasPet(john, ace), Hamster(ace),
but with the constraint petOwnerShape < JhasPet. T A VYhasPet.—~Dangerous. For john to vali-
date the petOwnerShape, it is not enough to make explicit in the ontology that hamsters are not
dangerous animals; it should also be enforced that any possible pet john might have cannot be
dangerous.

For lightweight DLs, fragments of classical Horn logics that cannot express disjunctive informa-
tion, a universal model can be obtained using standard, database-inspired chase procedures. These
models can be used for evaluating conjunctive, navigational and graph queries in the presence of

ontologies, see [9, 12, 13, 17, 26, 28] and their references. One of these options, using minimal
models of the Skolemnisation of the DL ontology, has been advocated for in the case of integrity
constraints [24, 29]. But even such models give very weak semantics in formalisms with negation

such as SHACL. Let us for example consider again another version of the toy database containing
pet owners: assume it contains the facts hasPet(john, ace), PetOwner(john), Hamster(ace). It is
conceivable to find an axiom like PetOwner C JhasPet. T in the accompanying ontology. Now let
the onlyHamsterShape be given by the constraint onlyHamsterShape < VhasPet. Hamster, which
we want to validate for john. This is clearly the case for the original database. It is also true that
the given database is already satisfying all given ontology axioms, so it seems there is no reason
to change the validation result. However, the minimal model under the Skolem semantics adds a
fresh node as a hasPet-child of john, without the label Hamster, changing the validation result to
negative.

To obtain stronger and more intuitive semantics, and to avoid the problems presented in the
previous example, we advocated in [2] for an austere canonical model in which axioms are satisfied
minimally, introducing as few successors as possible without losing universality. We showed that
for ontologies in DL-Liteg—the logic underlying OWL 2 QL [22]—such a model can be represented
by a so-called immediate successor function that describes the minimal set of facts that need to be
added to satisfy the axioms at a given point of the model construction. The model itself can then
be obtained in a deterministic, step-by-step fashion. We extend this construction in Section 3 to
the significantly more expressive Horn-ALCHZQ, one of the largest fragments of OWL that is still
contained in Horn logic. Crucially, we show that the resulting model is a core in the traditional
database sense. This provides strong evidence in favour of our chosen semantics, since cores are
often advocated as the adequate choice for languages that are not closed under homomorphisms,
but satisfy the weaker property of being closed under isomorphisms [5, 11, 18]. In the light of this
relationship, our austere model construction provides a novel technique for building core models
without the expensive core-checking step of traditional core chase procedures. As we point out,
the same applies to some previous model constructions from the DL literature [11, 17].

With our semantics based on austere (i..e., core) models in place, we can tackle the problem of
devising an algorithm for validation. Constructing the austere model may be infeasible in practice,
since it is infinite in general. Instead, we use our finite representation of the model. Ideally, we
would like to realise validation via rewriting. That is, we want to compile a given ontology and
a set of SHACL constraints into a new set of SHACL constraints that incorporate the relevant
knowledge of the ontology in such a way that the implicit facts are taken into account in validation,
without having to explicitly add them to the graph. Rewriting techniques are very desirable as



they open the way to reuse standard SHACL validators to perform validation in the presence of
ontologies. We use the finite representation of the austere canonical model to construct a complex
structure that stores so-called 2-types, which intuitively represent an abstract copy of a possible
object and its neighbours in the austere model of a given data graph—enriched with information
about the shapes that are (not) satisfied in implied substructures. This structure is used to induce
a modified set of SHACL constraints that validate over a given data graph exactly when the
original constraints validate over the austere canonical model of the input graph and the ontology.
We first develop the technique for a positive fragment of SHACL (with minor restrictions) and
then lift it to the case of stratified SHACL which allows both recursion and negation, but restricts
their interaction.’

The contributions of this paper can be summarised as follows:

e In Section 3, we provide a semantics for validating SHACL in presence of ontologies, and
argue why it is intuitive. For this, we introduce the notion of the austere canonical model, a
canonical model which locally does not contain redundant structures, and advocate checking
for validation over this specific model.

e In Section 4, we discuss that, although the austere canonical model may be infinite, we can
provide a finite representation in the form of the good successor configuration. We show that
the result of our construction coincides with the model construction proposed in [17] and
is universal indeed. Moreover, we show that the local minimality of the austere canonical
model suffices for global minimality: the austere canonical model is a core, and it is the
unique universal core model of a consistent Horn-ALCHZQ TBox.

e In Section 5, we define a fragment of recursive SHACL named stratified SHACL. Our notion
of stratification is based on the well-known class of stratified logic programs [4]. We define a
least-fized point semantics for it that coincides with both the stable [3] and the well-founded
[25] semantics. We also show that our fragment has a rather simple normal form with the
same expressivity.

e In Sections 6 and 7, we are able to bring validation over the possibly infinite austere canonical
model back to validation of a rewritten set of constraints over an enriched ABox. We do
this by combining the normal form of stratified SHACL with the information captured in
the good successor configuration.

e In Section 8, we discuss some techniques to create a pure rewriting of SHACL with ontologies
into plain SHACL. One of these techniques proposes an extension of SHACL, SHACL?, which
also allows to define labels for roles.

e Lastly, in Section 9, we determine the complexity of validating SHACL with ontologies. We
find that in presence of Horn-ALCHZQ TBoxes, SHACL validation is EXPTIME complete
in combined complexity, and PTIME complete in data complexity. Moreover, we show that
validating a very simple fragment of SHACL, simple SHACL, over a rather light (less expres-
sive than DL-Litery) description logic ontology already suffices to find ExPTIME hardness
in combined complexity.

2 Preliminaries

Data Graphs and Interpretations. Let No, Ng, Ny and N denote countably infinite, mutu-
ally disjoint sets of concept names (also known as class names), role names (or, property names),
individuals (or, constants), and blank nodes respectively. Let Ng := {p,p~ | p € Ng} denote
roles, and let N¢ := No U {T,L}. For every p € Ng, let (p~)~ = p. For each set of roles

I The impossibility of such a rewriting for SHACL with negation given in Theorem 1 of [29] does not hold, neither
for our semantics nor for the minimal-model semantics adopted in that work, as acknowledged by the authors in
personal communication.



RC Npg,set R~ :={r~ | r € Ng}. An atom (or, assertion) is an expression of the form A(e) or
ple,e’), for A€ N, p € Nr and {e,e'} C N;UNp. An ABozx (or a data graph) A is a finite set
of atoms such that no blank nodes are used.

An interpretation is a pair Z = (AZ,.1), where AT is a non-empty set (called domain) and
is a function that maps every A € N¢ to a set AT C A%, every p € Ng to a binary relation
pr C AT x AT, and every individual and blank node e € Ny U Np to an element el e AT, Let
(p7)% :={(¢',e) | (e,€') € p'}. We make the standard name assumption, which means eZ = e for
all interpretations Z, and all e € Ny U Np.

The canonical interpretation T4 for an ABox A is defined by setting AZ4 = N; U Np, ATA =
{c| A(c) € A} for all A € N¢, pt4 = {(c,d) | p(c,d) € A} for all p € Ng, and eZ4 = e for every
individual or blank node e € N;y U Ng. We consider an interpretation to be finite whenever AZ
and p? are finite sets, for each A € N¢ and p € Ng, and only finitely many concepts and roles
have a non-empty interpretation.

z

Morphisms. Let A and A’ be sets of atoms. A homomorphism from A to A’ is a function
h: AA — A4 such that for all {e,e’} € N;UNp, all A€ Ng and all p € N, (i) if e € A* NNy,
then h(e) = e, (ii) if A(e) € A, then A(h(e)) € A’, and (iii) if p(e,e’) € A, then p(h(e), h(e)) €
A’. A homomorphism is called strong when (ii) and (iii) are strengthened to “A(e) € A iff
A(h(e)) € A” and “p(e,e’) € A iff p(h(e),h(e’)) € A", respectively. An embedding is a strong
injective homomorphism, an isomorphism is a surjective embedding and an endomorphism of A
is a homomorphism from A to itself.

Syntax and Semantics of normalised Horn-ALCHZQ. Given a set M = {My,..., My}
consisting of only concept or role names, let [ |M := My M...M M. P(X) denotes the power set
of X. For a tuple ¥ = (21,...,2,) and 1 < j < n, we let m;(Z) = x; be its i-th projection.

In a normalised Horn-ALCHZIQ TBox T each concept inclusion takes one of the following
forms:

(F1) AyM...MA,CB (F3) ACVr.B
(F2) AC<,r.B (F4) AC 3B

for {A, Ag,...,Ap, B} C No and r € Ng. Furthermore, 7 may contain role inclusions of the
form r C ¢/, for {r,r'} C Ng.

The semantics of normalised Horn-ALCHZQ is defined in terms of interpretations Z: a concept
or role inclusion axiom C' T D is satisfied whenever CT C DZ. To this end, the interpretation
function is extended in the following way: TZ := AT, (A4gM...MA,)T = ATn...n AL (<
r.B) = {e € AT | |{¢/ € AT | (e,€/) € 71, ¢’ € BT} < 1}, (Vr.B)T = {e € AT | Ve €
AT (e,e/) € vt — ¢ € BT}, (Ir.B)L :={e € AT | 3¢’ € AT.(e,¢) € rT Ne' € BT}, We say a
TBox T is satisfied in Z whenever all its axioms are satisfied, in that case, we say Z is a model
of T. To denote logical entailment, we may write 7 |= « if every model of the TBox T is also a
model of v (where the latter may be any inclusion, a TBox, or an ABox). We call the combination
of a Horn-ALCHZQ TBox T and any ABox A a Horn-ALCHZQ knowledge base (T,.A). We say
that A is consistent with T (or, that (T, .A) is consistent) if there is a model of A and T.

We call an interpretation Z a universal model (of a knowledge base (7,.A)) whenever Z is
a model of (7,.A) and there exists a homomorphism of Z into any model of (7,.A4). Every
consistent (7,.A) has a universal model [21] Moreover, the universal model of (7,.4) coincides
with the universal model of (77°%, A), where TP° contains all axioms in 7 that do not contain
1. Therefore, we may assume that there are no occurrences of bot whenever (7,.A) is consistent.

Regular Path Expressions. Let E be any regular expression over some alphabet 3, and Lg
the language defined by some regular expression E. We say FE is a regular path expression, when
¥ = Ng. For each interpretation Z and each regular path expression E over the alphabet N g, set
(e,e') € ET if there exists rg-- -7, € Lg and {ey,...e,} C AT such that (e,e;) € 7L, (en,€') € 1k
and for all 1 <i<n—1, (e;, ;1) € L.



Furthermore, for each language L, there exists a non-deterministic finite automaton M =
(@, %, qr, A, qr) that accepts exactly all words in Lg. Here @ is a set of states, ¥ the alphabet,
{q1,q9r} C @ the initial and final state, and A C @ x ¥ x @ the transition relation. In this case,
we say M recognises L.

Non-Recursive Shape Constraint Language (SHACL). We define shape expressions, fol-
lowing [10], in the following way

pu=clA[T|=pleAp|eVe|I>nEp|eq(E,r)|disj(E,r) | closed(R),

where ¢ € N, A € Ng, n > 1, R a finite subset of N and E a regular path expression.

Given an interpretation Z, we say a node e € Ny U Np walidates a shape expression ¢, when
e € Z(yp), where Z(¢p) is inductively defined in Figure 2.1. Furthermore, let G be a set of targets of
the form ¢(c) or p(A), where  is a shape expression, ¢ € Ny and A € N¢. Given an interpretation
T, we say T validates G when for all p(c) € G, we find c validates ¢, and for all p(A) € G, if c € AT,
then ¢ validates ¢. Considering readability, we will also write A validates G, for any set of atoms
A, instead of using the canonical interpretation Z 4.

Z(c) := {c}
TZ(A) := AT
I(T) = A%

() UZ(¥)

I3snE.p) :={ec AT | |{ € AT |(e,e)) € ET N € Z(p)}| > n}

={ec AT | {3 € AT (e,¢)) € BT} = {e' € AT | (e,€) € rT}}
{
{

={ec AT | {3 € AT.(e,¢) € ET}n{e € AT | (e,e) € T} = ()}
Z(closed(R)) := {e € AT | not exists 7 € Ng \ R such that e € (3. T)%}

Figure 2.1: Evaluating shape expressions
In this definition, we do not allow shape names in the body of shape expressions. This makes

SHACL non-recursive and allows for the simple semantics we define above. In general, SHACL
allows shape names in shapes expressions and may be recursive, in which case there is no unique

accepted semantics [3, 25, 15]. For simplicity, we formulate all the results in Sections 3 and 4 for
non-recursive SHACL. However, the results and definitions can be directly applied to recursive
SHACL under all the semantics considered in [3, 25, 15]. Starting from Section 5, we concentrate

on a recursive form of SHACL, stratified SHACL, extending the work presented in [2].

3 Validation with Ontologies

In this section we propose a semantics for SHACL validation in the presence of a Horn-ALCHZQ
ontology. More precisely, for a given TBox 7, an ABox A, and a set of targets G, we aim to define
when (7, .A) validates G. A natural first idea would be to follow the usual open-world semantics
of Horn-ALCHZQ and check validation on all models of A and 7. While this works well for
positive constraints, it not yield a natural semantics in the presence of negation, as illustrated in
the following simple example.



Example 3.1. Consider the ABox A consisting of the facts hasPet(linda, blu), Bird(blu), an
empty TBox T and the target ¢(linda) such that ¢ is given by

@ = JhasPet.—~Dog.

Naturally, A validates G, as linda indeed validates ¢, which corresponds to having a pet that is
not a dog. Note that since we have an empty TBox, we would like to be in the usual setting
of validation here. That is, one would expect (T,.4) to validate G. However, if we consider all
possible models of (7,.A), we find non-validation: the case in which blu is both a Bird and a Dog
is also a model of (7T, .A), as there are no disjointness axioms in 7 preventing this. Q

The above example illustrates the problem of finding an intuitive semantics for shape expres-
sions, or, on the same note, queries, with negation. Roughly speaking, adding facts to the data
may cause a previously validated setting to become invalid. To this end, we aim at an intuitive
semantics that coincides with the usual validation in case the TBox is empty, but also lets the
TBox axioms influence the validation results in the relevant cases. As done in related settings
(see e.g., [11, 16, 24]) we rely on the chase procedure [1] known from Knowledge Representation
and Database Theory. Roughly speaking, a chase procedure takes as input an ABox and TBox
and iteratively applies the axioms of the TBox to the data by adding atoms over possibly fresh
individuals until all the axioms in the TBox are satisfied. The result of the chase is a so-called
canonical or universal model. Since there exists a homomorphism of all models of this type into
every other model of the ABox and TBox, a canonical model if often used as a representative of
all models.

There are several chase variants producing canonical models with different properties [16].
While for positive shape expressions these differences do not lead to different validation results,
shape expressions using negation can distinguish between them. Thus, the semantics we propose
is based on a particular variant of the set of universal models, based on local minimality. The idea
is to avoid redundant structures as much as we can: as illustrated in the next example, we do not
wish to assume the existence of a second pet of linda if there is no need for this assumption. At
the same time, we do not want to give up on the model being universal. This specific model, the
austere canonical model, will be constructed in the rest of this section.

In the following example, we show that shape expressions with negation can indeed distinguish
between different universal models, and illustrate how the austere canonical model does not have
the redundant structures that may appear in other universal models.

Example 3.2. Consider the ABox A = {PetOwner(linda), has WingedPet(linda, blu), Bird (blu)}
and the the following three axioms:

PetOwner C JhasPet, has WingedPet T hasPet,
PetOwner C JhasWingedPet.

The austere canonical model (right in Figure 3.1) will only add a hasPet-role from linda to
blue, as we will see below. In contrast, the canonical model obtained from the oblivious chase
or Skolem chase (left in Figure 3.1) will introduce two fresh objects to satisfy the two existential
axioms.

When graphically representing interpretations, domain objects are written in rectangular boxes
(individuals in red and blank nodes in orange boxes), followed by a semicolon and the concept
names in whose interpretations it participates, if any. Roles are depicted as labelled arrows.

Now let us consider the same shape expression and target as in the previous example: ¢ =
JhasPet.—Bird} and G = {p(linda)}. The target asks to validate whether linda has a pet that
is not a bird. Clearly, the austere canonical model provides the expected answer, as it does not
validate G. In contrast, the canonical model on the left-hand-side of the figure, also the semantics
of [24] adopted for SHACL in [29], results in the unintended validation of (C,G). Q@

In the rest of this section, we will make the above precise.



| linda; PetOwner| hasWP. hasP | linda; PetOwner|

hasWP,hasP hasP hasWP,hasP

blu; Bird b c blu; Bird

Figure 3.1: Result of oblivious or Skolem chase (left) and austere canonical model (right). We use hasWP
and hasP as a shorthand for hasWingedPet and hasPet.

3.1 Good Successor Configuration

To capture local minimality, we define the auxiliary notion of the good successor configuration.
It determines, for each point e in a model, the set of fresh successor individuals and the roles
connecting them to e in the austere canonical model, together with the concepts that must hold at
e. To describe the good successor configuration, we use 2-types and 13-types. We say t is a 2-type
when t € P(N¢) x P(Ng) X P(N¢). Similarly, we let u be a 14-type in case u € P(Ng) x P(N¢).
A 2-type describes a pair of nodes and the roles between them, while a 1Z-type describes a set of
roles leading to one node. Furthermore, we define the inverse function inv mapping a 2-type to
a 2-type by setting inv(t) := (m3(t), (m2(t)) ™, m1(£)).

To understand the good successor configuration, assume we are building a model in a chase-like
step-by-step manner. We want to introduce the children that a node ¢ needs to satisfy the TBox.
Let ¢1,...c, be the neighbours that ¢ already has (either given in the ABox, or its single parent
¢1 in the model construction). We use a set F' of 2-types to describe ¢ and its environment as
follows. For each ¢;, some type t; € F describes ¢ in relation to ¢;: (i) m1(¢;) is the I-type of
¢, that is, the concept names whose interpretations contain ¢, (ii) m3(t;) is the 1-type of ¢;, and
(ili) m2(t;) contains all role names connecting ¢ and ¢;. Note that, by item (i), m(t;) = m1(t;) for
all {t;,t;} C F. The good successor configuration is a function that takes such an F, and returns
the description of the children that ¢ needs to satisfy all axioms in 7T, as a set of Igl—types: we will
add a new blank node d; with for each u; € sucer(F); d; will be connected to ¢ via the roles in
71(u;), and have I-type ma(u;). This idea is illustrated in Figure 3.2.

However, the good successor configuration does not just take specific neighbourhoods of the
nodes in some database as input; it is defined for all possible F’s. This makes the good successor
configuration data independent.

73 (¢) m3(t’)
\ /4
) = m(t)

m/\

Figure 3.2: Structure of the good successor configuration in case of two neighbours F' = {t,t'} and two
13-types u and u’ that together form the set succr(F).

Note that we use below expressions of the form 3([|R).[ | N with the following semantics:
I[)R).[ |V :={e € AT |3’ € ATYr € R(e,e') er" A€ € ([ |N)T}
Definition 3.3. Given a Horn-ALCHZQ TBox T and set of 2-types F, such that w1 () = w1 (')

for all {¢,¢'} C F, the good successor configuration succr(F) is a possibly empty set of 1Z-types
u such that:



(R1) If (i) M C my(t) for some t € F, (ii) T = [1M C 3(]R).[]N for some N C Ng, RC Ng,
and (iii) for all t € F, R € ma(t) or N € m3(t), then there exists u € sucer(F) such that
R Cmi(u) and N C ma(u);

(R2) If w € succer(F), then there exist M C my(t) for some ¢ € F, such that 7 = [|M C
AT (w)- [ (w);

(R3) There do not exist {u,u’'} C sucer(F) such that m1(u) C m(uv') and ma(u) C ma(u');

(R4) If u € sucer(F), then m(u) € ma(t) or ma(u) € m3(t), for all t € F.

We say a 2-type t' € childr(t) is a child of a 2-type t iff m(t') = mw3(t) and (m2(t'), 7s3(t)) €
sucer(inv(t)).

As mentioned, the good successor configuration focusses on checking which axioms are not yet
satisfied in the context described by F'. For each such unsatisfied axiom (R1) implies the existence
of a child d; represented by some u; that ensures the satisfaction of the axiom. (R2) represents
the other direction: for each child d;, there must exist an axiom implying the information in the
14-type u;. Lastly, (R3) and (R4) check whether there are no superfluous children: they enforce
we do not add two children d; and d; such that all information about d; is subsumed by d;, or a
child d; that is already subsumed by the environment described in F'. We will use these properties
extensively in Section 5 to prove that the austere canonical model is in fact a core.

In the following example, we compute the good successor configuration for a concrete case.

Ag Ao Ay
r,;\ /“\1 1,72
By, B; By, By
7’0,7‘/ N:g 70,71
Ag, Ay As Ag, Ax

Figure 3.3: Given the TBox 7T as in Example 3.4, the good successor configurations for F
{({BovBl}v{rl}v{AQ})v({BovBl}v{Tl}a{AQ})} and F' = {({BO7B1}7{TlvTQ}v{AQ})}v are SUCCT(F)
{({ro,m},{Ao, A1}), ({r2}, {A2})} and sucer (F”) = {({ro, 71}, {40, A1})}.

Example 3.4. Consider the axioms below, together forming the TBox 7.

(Tl) BO E 37"0.140 (T4> AO E Al (TG) B]_ E HT‘Q.T
(TQ) BO E E|7“1.A1 (T5) To E T1 (T?) B() E VTQ.AQ
(T3) B1 C<ym. Ay

We want to compute the good successor configuration for the following sets of 2-types F =
{({Bo, B1}, {r1},{A2}), {Bo, B1}, {r1},{A2})} and F' = {({Bo, B1}, {r1, 2}, {A2})}.

First, note that (T1-5) together lets us conclude 7 = BoM By T 3(rgMr1).AgMA;. Moreover,
combining (T6) and (T7) gives us 7 = By M By T 3ry.As. Thus, by (R1), we find that there
must exist {u,u'} C sucer(F) such that {ro,r1} C m(u), {4o, A1} C m2(u), {ro} C m(v') and
{43} C ma(u’). Note that considering m(u) = {ro,m1}, m2(u) = {Ao, 41}, m(v') = {r2} and
ma(u') = {As} suffices, as we know that these are the axioms carrying most information that can
be derived. It is easy to check that indeed sucer(F) = {u,u'}; see also Figure 3.3.

For computing the good successor configuration of I, we can mostly follow the above strategy.
However, «’ cannot be added by (R1), as v’ is already contained in the environment described by
F'. This does not hold for u, so it is easy to check that sucer(F') = {u}. @



Essential to the rest of this article is the uniqueness and existence of the good successor
configuration. This implies that the construction described in the next chapter creates a unique
structure.

Proposition 3.5. Given a Horn-ALCHIQ TBox T, for each set of 2-types F, such that 71(t) =
w1 (') for all {t,t'} C F, there exists a unique good successor configuration succy(F).

Proof. To show uniqueness, suppose for a given set of 2-types F', such that m (¢t) = m1(¢’) for all
{t,t'} C F, there exist two good successor configurations U # U’. W.l.o.g., assume that there
exists u € U, such that v ¢ U’. By (R2), we know that there exists M € 7 (t) for some ¢ € F such
that 7 E [1M C 3(|m1(uw)).[|m2(uw). Moreover, by (R4), we can conclude that 71 (u) & ma(¢)
or ma(u) ¢ m3(t) for all t € F, so we can apply rule (R1) with respect to U’: there must exist
u' € U’ such that m(u) C m1(v') and m2(u) C m2(u’). By similar reasoning, we find that there
must exist u” € U such that m1(v’) C m1(u”) and ma(u') C ma(u”). Combining this with (R4),
we find that 7 (u) = 71 (u”) and ma(u) = me(u”), from which we derive that u € U’, which is a
contradiction. Thus, U = U’. For existence, note that we can first add all possible 14-types that
are not eliminated by (R2). It follows that (R1) is clearly satisfied. Then, remove all 1Z-types
that are not allowed because of (R3) or (R4). &

By using the inference rules from Table 2 in [17], combined with the approach described in
this proof, it becomes clear that the good successor configuration can actually be computed.

3.2 Austere Canonical Model

The good successor configuration locally describes how to satisfy the TBox axioms based on some
incentives - minimality and universality. Before we use it as a building block in the austere
canonical model, we first want to complete A under all but existential axioms. We will use the
notation A7 for this completed ABox, which is in fact the least fixed point of an immediate
consequence operator. The point of this operator is to mimic firing the non-existential axioms as
soon as they become applicable. We perform the least fixed point starting from a non-empty set:
the ABox. This is made precise in the following definitions.

Definition 3.6. Let T : X — X be any immediate consequence operator, define for any S C X,
T 1% (S) as follows:

e T10(8):=8,
o T (S) =T(T 1" (95)),

o« T (8) = U, T 1 (S).

Definition 3.7 (Completion A7y). Given a Horn-ALCHZQ TBox T, define an immediate conse-
quence operator T7 that maps a set of atoms X to a set of atoms as follows:

Tr(X) := XU{B(a) | {4o(a),...,An(a)} C X, T EA4N...MNA, C B}
U{B(a) | {r(b,a),A(b)} C X, ACVr.BcT}
u{r(a,b) | r'(a,b) € X, T Er" Cr}
U{r(b,a) | r'(a,b) e X, T ETr Cr~}
U{B;(b) | {A(a), A1(a),...,An(a),r(a,b),B(b)} CX,AC<; rBeT
TEAN..NA,C3(riMN...MNry).BiM...M By, A= Aj,r =ry for some j,k}
U{ri(a,b) | {A(a), A1(a),...,An(a),r(a,b),B(b)} C X, AC<;rBeT
TEAN...NA, CI(rN...Nry).B1N...NBy, A= A;,r=r for some j, k}.
Given any ABox A, let N;(A) be the set of individuals occurring in A. We set A(a) € A7 and

r(a,b) € Ay, iff A(a) € Tr 1 (A), respectively r(a,b) € T+ 1 (A), for all A € Ng, r € Npg,
{a,b} C Ni(A).



Note how the rules in this definition mimic the completion rules for ABoxes under Horn-SHZ Q
ontologies in [17].

Example 3.8. Let A = {By(a),r¢(a,b),r2(a,b), Ag(b)} and T as in Example 3.4. Then A; =
{Bo(a), 7’0((1, b)7 1 (a, b), ’)"2(0,, b), Ao(b), Al(b), Ag(b)} Q

Now we are ready to define the austere canonical model.

Definition 3.9. Given a Horn-ALCHZQ knowledge base (7,.A). Let N¢r 4y € Np be the set of
finite words of the form aky ...k, with a € N;(A) and for all 1 < i < n, k; is a 2-type such that
the following hold:

1. m(k1) = {A | A(a) € A7} and (mo(k1),m3(k1)) € sucer(Ty,), for T, = {({A | A(a) €
ATH D, 0} VU, r(apyear, {{A ] Ala) € A7} {r [ r(a,b) € AT} {A] A(b) € ATH};

2. for every 1 < i < n, kiy1 € childy(k;).

We use tail(w) to denote the last 2-type k, in, and |w| = n + 1 as the length of a word
w € N1 4 of the form ak; ... k.

The austere canonical model can(T,A) of a Horn-ALCHIZQ knowledge base (T,.A) is the
interpretation can(T,.A) with domain A®™(7-4) .= N (A)U N(7,4y such that for all a € N7(A),
concept names A and roles r, the following hold:

1. qcn(TA) .— a;
2. Ac(TA) .= {a € Ny | A(a) € AT} U{w € N7 4y | A € m3(tail(w))};

3. rean(TA) .= {(a,b) € Ny x Ny | r(a,b) € A7} U
{ wl,wQ) S (N[ UN(7-7A)) X N(T,A) | wo = wik,r € 7T2(/€)} @]

(
{(wg,wl) S (NI U N(T,.A)) X N(T,.A) | wo = wik,r” € 71'2(/{3)}
This is illustrated in the following example.

Example 3.10. Let A = {Bqy(a), Bi(a),r1(a,b),r(a,c), A2(b), A2(c)} and suppose T contains
the same axioms as in Example 3.4. We find that A+ = A, as none of the non-existential axioms
can derive any new information in the ABox.

Now consider the set F,, = {({Bo, B1},{r1},{42}), {Bo, B1},{r1},{A2})}, based on the neigh-
bours of a. The good successor configuration of this set has already been computed in 3.4:
sucer (Fy) = {u,u'}, where u = ({ro,m1}, {Ao, 41}) and v’ = ({r2}, {A2}). Following the defini-
tion of the austere canonical model, we find {at,at’} C N7 4, for t = ({Bo, B1},m1(u), m2(u))
and t' = ({Bo, B1}, m(u'), m2(u’)). Now we can read off the structure of the anonymous part of
the constructed model: we find for instance that (a,at) € ri™™ ) and at € AZ™ T4 Q

For a consistent knowledge base (7T ,.4), the austere canonical model can(T,.A) exists and is
unique, which follows directly from the uniqueness and existence of the good successor configura-

tion and A7.
Note that the austere canonical model coincides with the result of the model construction
presented in [17]. In that construction, A is first closed? under all implied axioms, except for

the existential ones, followed by applying all so-called ‘maximal’ existential axioms in a chase
like manner whenever applicable. To see the correspondence with our construction, it suffices to
note that Definition 3.7 formalises the first step, whilst the good successor configuration captures
exactly the ‘maximality’ of axioms in (R3) and the applicability in (R3) and (R4).

Corollary 3.11. For each Horn-ALCHIQ knowledge base (T, A), can(T,.A) is (i) a model, and
(i) universal.

2As confirmed by the authors of [17], the conclusion of rule R< should be updated to M M M’'MAC 3(SM.S' M
r). (N N1 B).

10



This result follows directly from Proposition 2 in [17] and justifies the name ‘canonical’ we
gave to our construction. Finally, we define SHACL validation over Horn-ALCHZQ as validation
of SHACL over the austere canonical model.

Definition 3.12 (Validation with Horn-ALCHZIQ). Given a Horn-ALCHZQ knowledge base
(T, A) and a set of targets G. We say (T,.A) validates G if can(T,.A) validates G.

In general, given any semantics for SHACL validation, we define the semantics of SHACL
validation with Horn-ALCHZQ ontologies, as validation of SHACL over the austere canonical
model. In particular, this approach will be used for stratified SHACL, a fragment of recursive
SHACL. We refer the reader to Section 5 for more details.

4 Finite and Infinite Cores

In database theory, the property of an interpretation or structure being a core is well studied. It
is a property that ultimately represents the lack of redundant structures. Therefore, this property
is not only nice to have, but particularly relevant in our setting. In fact, we will show that the
austere canonical model is a core. Before we get there, we first provide the required theoretical
background.

To start, we say an interpretation Z is a core if each endomorphism of Z is an embedding. That
is, each homomorphism of Z into itself is both strong and injective. The core of a set of atoms A
is a set of atoms B C A, such that (i) there exists an endomorphism A from A to B, (ii) B is the
restriction to the image of h, and (iii) B is a core. We write A <~ B. Each finite set of atoms
has a core that is unique up to isomorphism [19].

Example 4.1. Recall Figure 3.1, which illustrates the results of the oblivious chase and the austere
canonical model of some given knowledge base. The oblivious chase model can be described by
the following set of facts:

X = {PetOwner(linda), Bird(blu), has WingedPet (linda, blu), hasPet(linda, blu),
hasWingedPet(linda,b), hasPet(linda, b), hasPet(linda, c)}

where b and ¢ are unknown individuals, i.e., elements of the set Np, whereas {linda, blu} C Nj.
Thus, in each homomorphism from X to X, that is, each endomorphism of X, ‘linda’, and ‘blu’
must be mapped to themselves, which is not true for b and c. It is easy to check that h: X — X
given by h(linda) = linda, h(blu) = blu, h(b) = blu and h(c) = blu is an homomorphism, but not
injective or strong. Thus, h is not an embedding and X is not a core. Nevertheless, the austere
canonical model described in the same Figure 3.1, is a core, and also the core of X. Q

In the rest of this section, we first show that the austere canonical model is the unique universal
core model of a given Horn-ALCHZQ knowledge base (T,.A). After that, we discuss the tight
connection between the austere canonical model and the core chase.

In the rest of this section, we also allow sets of atoms to be models. This is a shorthand for
saying that the canonical interpretation of this set is a model.

4.1 Universal Core Model

To show that can(T,.A) is a core, we use the notion core cover: an interpretation Z has a core
cover whenever there exist a series of finite interpretations Zo C 7y CZ, C ... with Z = Ui>0 Zi,
such that for all Z;, each homomorphism h : Z; — Z is an embedding. Showing there exists a core
cover is enough to show our structure is a core.

Definition 4.2. Set can,(T,.A) for each positive natural number n as a finite approzimation of
can(T, A), as follows:

1. Acan,,,(T,.A) = {l‘ c Acan(T,.A) ‘ ‘xl < TL},
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2. ac@nn(TA) .= qean(TA) for all a € Np;
3. ceann(TA) .= L3 € Ceo(TA) | |z| < n}, for all C € Ng;
4. pearn(TA) = {(z,y) € reonTA) | |z < n,|y| < n}, for all r € N}

Note that can, (T, .A) is not per se a model of (7,.4). However, if the nth approximation is a
model, then can, (T, A) = can(T, A).

Example 4.3. Suppose A = {A(a)} and 7 = {A C Ir.A}. Let t = ({A},{r},{A4}) be a
2-type. First, notice that ¢t € child7(t). Then the nth approximation is a chain of length n:
Acarn(TA) = Latt | i < n}, A% (TA) = Lot | § < n} and reo(TA) = {(at? at’™!) | i < n},
where ¢! denotes the concatenation of i times ¢. Q

Theorem 4.4. For each Horn-ALCHIQ knowledge base (T, .A), can(T,.A) is a core.

Proof. From [14], Theorem 16, we learn that each interpretation that has a core cover is a core.
Thus, it suffices to show that Z; = can;(T,.A) is a core cover for

7= U can; (T, A) = can(T, A).

i>0

It is immediate that for each i, the identity mapping h; : AT — A™(T2A) given by x — x is an
embedding.

Consider a fixed i. By induction on |z| it is shown that for all homomorphisms h : ATi —
Ace(T-A) - h(x) = hi(z) = 2 holds.

e |z| = 1. As by definition, {z € A%
homomorphism h, h(z) = x.

|z] = 1} = A% N Ng, it follows directly that for each

e || <n+1 <4 Let us consider some ak; ...k, € AT, By induction hypothesis, we know
that for all homomorphisms h, h(aky ... kn—1) = aky ... kn—1. As (aky ... kn_1,aky ... k) €
rZi for all roles r in k,, we also have to ensure (aky...k,_1,h(aky...ky)) € reen(TA)
which means that we can already restrict h(aky ...k,) € {aky... ky_o} U {aky ... kn_1k! |
ki, € child(kn,—1)} for each possible homomorphism h. By (R4) of Definition 3.3, we find
that h(aky ... k) # aky ... k,—_o. Similarly, (R3) eliminates h(ak; ... k) = aky ...k}, for all
k!, # kyn. So, the only option is h(ak;...k,) = aky...k,, which concludes the induction
step.

Thus, h; is the only homomorphism h : Z; — can(T,.A) and the identity mapping is trivially an
embedding, which concludes the proof. &

The following corollary can be shown with a similar proof.
Corollary 4.5. Every finite approzimation can, (T, A) of the austere canonical model is a core.

Next to being a core, the austere canonical model is also the unique core universal model, up to
isomorphism, for each Horn-ALCHZQ knowledge base. This is proven in the following theorem.

Theorem 4.6. FEach consistent Horn-ALCHZIQ knowledge base (T, A) has a unique (up to iso-
morphism) universal core model, namely the austere canonical model can(T, A).

Before we get into the actual proof, note that the definition of a core was originally solely
intended for finite structures. There are multiple ways to define a core for infinite structures that
all coincide for finite cases [7, 8]. One of these approaches, requiring that each endomorphism
is an embedding, is the one used up till now in this section. A stronger considered version is to
also require each endomorphism to be surjective, that is, requiring that each endomorphism is an
isomorphism. To distinguish this case from the core definitions discussed before, we say such an
interpretation is a strong core. According to Bauslaugh [7], these stronger cores have the nicest
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behaviour in the infinite case. However, they might not exist: an infinite chain of non-individuals
is a core in the endomorphisms-are-embeddings-way, but not under the stronger definition.

In the following proof, we prove that the austere canonical model is also a strong core. Some
properties of this stronger definition then help to show that there exists indeed a unique universal
core model, up to isomorphism. In line with the definition above, we say an interpretation Z has
a strong core cover when there exist finite interpretations Zop C Z; C Ip C ... with T = {J,;+, Zs,
such that for all Z;, each homomorphism h : Z; — Z is an isomorphism.

Proof. First, note that the proof of Theorem 16 in [14] can easily be extended to also hold in this
case: if an instance has a strong core cover then it is a strong core.

From the proof of Theorem 4.4, it is clear that Z; = can;(7T,.A) is a strong core cover for
can(T,A), and thus that can(T,.A) is a strong core. Now suppose there exists another universal
core model J of the knowledge base (7,.4). Because both models are universal, there exists
homomorphisms in both directions. Since each endomorphism of can(7T,.4A) must be bijective
and strong, and each one of J injective and strong, it is straightforward to conclude that the
homomorphism mapping J to can(T,.A) must be bijective and strong too: J and can(T,.A) are
indeed isomorphic, as required. &

4.2 Core Chase

The core chase is a method that is complete for finding the unique (up to isomorphism) finite
universal core model, whenever it exists [16]. Following this same paper, we will now briefly
introduce the core chase. Recall we may view any set of atoms A as an interpretation with
domain A“. As chase procedures are often seen as series of sets of atoms, this assumption makes
the following definitions more in line with the literature on chase procedures.

The core chase is constructed by alternating the application of two operations: firing all not-yet
satisfied axioms and taking the core of the resulting structure. This procedure is repeated until it
terminates, producing a series of sets of atoms where the last set is defined to be the result of the
core chase. If the series does not terminate, the core chase is undefined.

We start by formalising the first operation. For this, we consider a function that fires the
right-hand side of axioms: the function f;, defined for each x € N;U Ng. This function translates
a concept into a set of atoms, and is inductively defined in the following way: f.(T) := 0,
Fo(A) = {A@)}, foBro ... 17).C) 2= {ro(. ), 75 (4 @), - - T, y)s 7 (y.2)} U ,(C) for
some fresh variable y and f,(C M1 C") := f,(C)U f,(C").

To determine which axioms we want to fire, we define a set of matches m(7T,.A) containing
pairs of one or two nodes in Ny UNg and a Horn-ALCHZQ axiom. We say (¢, C C D) € m(T,.A)
iff there exists an axiom C T D € T and a homomorphism h from f,(C) to A, such that
h(z) = ¢ and there is no homomorphism from f,(D) to A such that h(z) = ¢. Similarly, we
say ((¢,d),r C 7') € m(T,.A) iff there exists an axiom r C r’ € T such that r(c,d) € A and
r'(c,d) € A. No other elements are contained in m(7,.A).

Combining the above, we can fully define the first operation: for an Horn-ALCHZQ TBox T

and ABoxes A, A’, we let A T, A iff

A= AU U fe(D)U U r'(c, d).

(¢,CCED)emM(T,A) ((e,d),rEr")em(T,A)

In case there exists an axiom of the form A °>; r.Bin T, such that {A(z), r(z,y), B(y),r(x, 2), B(z)}
would be contained in A’ for some {z,y,z} C N; U Np, a simple substitution of all y’s by 2’s is
performed to get the final A’, assuming y & Nj.

Furthermore, for any binary relation —, we use the notation A (—)“ A’ to denote that there
exists a natural number n such that A(—)"A" and for all A" such that A" — A" we find A’ = A".
With o we denote the concatenation of two binary relations, that is, A — o —' B iff there exists
A’ such that A — A’ and A’ —' B, for each pair of binary relations — and —’. Recall we write

core

A ——= B in case B is the core of A.
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Definition 4.7 ([16]). Given a Horn-ALCHZQ knowledge base (7,.A), the core chase is the

core

unique, up to isomorphism, set of atoms B such that A (1> o —)¥ B.
Clearly, this series is not guaranteed to be finite, see for instance the following example.

Example 4.8. Suppose A= {A(a)} and T = {AC 3r.A}. Then

A (l> o L%n {A(a),r(a,a1), Alar),r(a1,a2), Alaz),...,r(an-1,an), Alan)}
for each natural number n. Q

As mentioned before, in non-terminating cases, the core chase does not produce a result.
Simply taking the union of the sets in the core chase construction is in any case not a good idea.
More on this topic is discussed in [14], combined with a proposal on how to generalise the core
chase construction to an infinite setting: the stable chase. A drawback of this approach is that
the result of the stable chase in general misses the universality property. It is unclear whether the
stable chase for description logics might result in an non-universal model too. In case the result
of the stable chase for Horn-ALCHZQ is indeed universal, this result coincides with the austere
canonical model, up to isomorphism, which can be shown in a similar fashion as Theorem 4.6.

So, drawbacks of the core chase construction are that it is unclear whether the core chase ter-
minates and produces a result. Furthermore, the process of performing the core chase construction
itself is expensive, as taking the core of a structure is expensive and happens regularly. The good
news is that for Horn-ALCHZQ, the austere canonical model coincides with the result of the core
chase, when existent. This means the above troubles are resolved: the austere canonical model is
always defined and is constructed without having to take cores of structures.

Theorem 4.9. Given a Horn-ALCHIQ knowledge base (T, A) such that can(T,.A) is finite. Let

core

B be the unique, up to isomorphism, structure such that A(L o ——)“B, then
> can(T, A).

Proof. We note that B is a core by definition, and the same holds for can(T,.A) by Theorem 4.4.
Since both are cores, it suffices to show that there exists homomorphisms in both directions.
Note that can(T,.A) is a model by Proposition 3.11. As B is a universal model [10], it follows
that there exists a homomorphism from B into each model, including can(T,.A). By Proposition
3.11 we also have that can(T,.A) is universal, which means also the other required homomorphism
must exist. &

5 Recursive SHACL

In the third section, we described non-recursive SHACL validation in presence of ontologies. We
will continue the rest of the paper considering a fragment of SHACL that allows recursion: stratified
SHACL. There is no unique way to extend the simple semantics we discussed before to the recursive
case, and some alternatives have been explored in the literature, like the stable model semantics
[3], the supported model semantics [15] and the well-founded semantics [25]. The semantics we
will discuss here is the least-fized point semantics. We note it coincides with the stable model
semantics and the well-founded semantics on each set of stratified constraints.

As discussed, recursive SHACL allows shape names in the definition of shape constraints. To
this end, let Ng denote a countably infinite set of shape names that is disjoint from No U Ni U
N; U Np. A shape constraint is an expression of the form s < ¢, where s € Ng and ¢ a shape
expression defined like in the preliminaries, with the addition of allowing referencing shape names
s within ¢. We call s the head of a constraint s <— ¢. Note that we allow s to appear as the
head of multiple constraints. In the rest of this article, we impose some additional restrictions
and consider only a fragment of recursive SHACL. We leave the generalisation of our results to
full recursive SHACL for future work.
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That is, let ¢ be defined in the following way
pu=cl|s|as|A|lpVeleAp|TRe|IE.o|cheq(E,E") | cAdisj(E, E'),

where ¢ € N;, s € Ng, A € N¢ and R the conjunction of roles in Ny and F and E’ regular
expressions over the alphabet N g.

First, note that our versions of path equality and disjointness, cAeq(FE, E') and cAdisj(E, E’),
distinguish themselves from the version in the preliminaries and the SHACL standard in two
ways. First, the standard requires £/ € Ng. We generalise this and allow E’ to be any regular
expression. Secondly, for technical reasons, we add a ‘guard’ in the form of an individual ¢ € Nj.
Furthermore, this fragment lacks counting over regular path expressions and closure constraints.
Especially counting over regular paths is a feature that requires a lot of attention when extending
our results. Lastly, we increase the expressivity of SHACL slightly by adding conjunction of roles
in the form 3R.p, for R a conjunction of roles in N g, which we use to reduce Horn-ALCHZ Q-
reasoning combined with SHACL to plain SHACL reasoning.

The semantics of recursive SHACL is defined in terms of a shape assignment. A shape assign-
ment is a set of shape atoms S, such that the rules specified in Figure 5.1 are satisfied. Taken
into account that s < ¢ € C implies that (p)Z° C s7*°. As mentioned before, there is not an
agreement on a unique semantics for recursive SHACL in the literature. Nevertheless, what all
semantics have in common is that the shape assignment S, a set of shape atoms, of the form s(c),
for s € Ng and ¢ € Ny, satisfies this same set of rules.

CI,S _ {CI}
sh9 ={ec AT | s(e) € S}
(—s)5% = {e € AT | s(e) & S}

AI S AI
(V)P = ()P u(¢)?
(e A VP8 = ()5 N ()FF

)Es
(BR.p) S ={ec AT |3 c ATVr e R: (e,e!) e rT A € pB5)
)IS

(HEQD _{6€AI|E|6 GAI (ee)eEI/\QGQDIS}
(cheq(E,ENTS = {cf} if{e€ AT [(c,e) € BT} ={e€ AT [(c,e) € B}
7 0 otherwise.
(C/\ dIS_j(E E/))I,S _ {CI} if {e € AI | (Cv e) € EI} n {6 € AI ‘ (C, 6) S E/I} = (Z)
’ 0 otherwise.

Figure 5.1: Evaluating shape expressions

In the recursive setting, the form of targets is changed: we now consider a set of shape atoms
s(c). We will discuss this further in Section 10. As we are considering shape atoms, we also need
constraints providing meaning to the shape names. Thus, the notion of targets is replaced by
shape graphs. A shape graph is a pair (C,G), where C is a set of shape constraints and G is a set
of shape atoms.

5.1 Stratified SHACL

In this article, we are interested in shape assignments where each shape atom has a proper justi-
fication. That is, we do not wish to just add any shape atom to S and then see whether we can
produce a set that satisfied the constraints in Figure 5.1. One option would be to resort to the full
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stable model semantics, but only if we want to give up on polynomial time data complexity. Thus,
we focus on a more straight-forward semantics, based on stratified sets of constraints. This is a
fragment of recursive SHACL which supports negation to a certain extend, but restricts the full
combination of recursion and negation. To this end and following the logic programming literature
[1], a partition of constraints (stratification) is defined such that a justified shape assignment can
be constructed by processing each partition individually.

Definition 5.1. We say a shape name s occurs negatively in a shape constraint s’ < ¢ if —s
occurs in ¢. We say a shape name s is defined in a set C of constraints if s <— ¢ € C for some ¢.

A set C of constraints is stratified if it can be partitioned into sets Cy,...,Ck, called strata,
such that, for all 0 <4 < k, the following hold.

1. If i < k and s’ occurs in ¢ for some s < ¢ € C;, then s’ is not defined in C;; 1 U...UCyg.
2. If s’ occurs negatively in ¢ for some s < ¢ € C;, then s’ is not defined in C; U ... U Cg.
A set of constraints is stratified if it admits a stratification.

Without loss of generality, we can assume that all constraints with the same head are defined
in the same stratum.

A standard way to obtain a stratification is to define a dependency graph (V, E, E*) with the
set of shape names used as the nodes V. In this graph, there are two types of edges: marked edges
E* and standard edges FE, such that E* C E. We use the standard edges to mark that s occurs in
a shape constraint with head s’. In that case, we set (s,s’) € E. If this is not just any occurrence,
but s occurs negatively in a shape constraint with head s, then we also set (s,s’) € E*. The
lowest stratum is the biggest set of nodes X such that if s € X and (s',s) € E, then s’ € X and
for all s € X, there does not exist any s’ € V such that (s’,s) € E*. To find the next lowest
stratum, simply remove all shape names in X from the dependency graph and repeat the above.
This may be repeated until all shape names are assigned a stratum.

Given any stratification of a set of constraints, we compute the shape assignment of stratified
SHACL with a least-fixed point operator over each stratum, with negation as failure to compute
the opposite in an earlier stratum. To do so, we first define the notion of an immediate consequence
operator T7 ¢ that, given a shape assignment S, adds new shape atoms to satisfy the constraints
that are fired by the constraints in C based on S and 7.

Definition 5.2. Given a set of constraints C and an interpretation Z with N; C A, we define
an immediate consequence operator T7 ¢ that maps shape assignments to shape assignments as
follows:

Tre(S):=SU{s(a)| s+ peC,ac (p)F7}).

The following two propositions are a direct consequence of the characterisations from [4] in the
context of stratified logic programs. Here, we will use the definition of the least fixed point starting
from a given set again. We refer the reader back to Definition 3.6 for the precise definition.

Proposition 5.3. If C is a constraint set that does not define any shape names that occur nega-
tively in C, then the following hold:

1. Tr ¢ is monotonic, i.e. if S C S, then Tz c(S) C Tz c(S);
2. Tz ¢ is finitary, i.e. TI,C(U(:LO:O Sn) C Uff:o Tz ¢(Sy) for all infinite sequences So € S1 C ...

3. Tz c is growing, i.e. Tr c(S2) C Tz c(Ss) for all Sy, 52, Ss such that S1 C Sy C S3 C Tz e 1
(S1)-

Proposition 5.4. If T is an interpretation and Cy,...,Cx is a stratification of C, then each
Tzcys---5T1,c, is monotone, finitary, and growing. Thus, for any shape assignment S and each
0<j <k, Trc, 1 (S) is a fizpoint of Tz c,.
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Based on the above, we can now define the computation of the desired shape assignment along
a stratification Cy,...,Cy of C.

Definition 5.5. Assume 7 is an interpretation, C is a stratified set of constraints, and let Cy, . . ., Cg
be a stratification of C. Then let

Mo =Tz, 1 (0)
Mi = TI,C,L' Tw (Mi,1> for each 1 < i < k.

We let My be the perfect assignment for C and Z, and let PA(C,Z)=Mj. An interpretation Z
(resp., ABox A) validates a shapes graph (C,G) if G C PA(C,T) (resp., G C PA(C,ZA)).

Following the same logic programming literature, the particular stratification chosen does not
matter: any stratification will give the same perfect assignment. Given this semantics, it is now
straightforward to extend Definition 3.12 to recursive SHACL and shapes graphs.

Definition 5.6. Given a Horn-ALCHZQ TBox T and ABox A, and a shapes graph (C,G). We
say (T, .A) validates (C,G) if can(T,.A) validates (C,G).

5.2 Normal Form

A nice feature of the SHACL fragment introduced at the start of this section, is that it has a
rather succinct normal form with the same expressivity. In the rest of the paper, we will assume
that all the given set of constraints are in normal form.

Definition 5.7. A SHACL constraint is in normal form if it has one of the following forms

(NC1) s ¢ (NC2) s+ & (NC3) s+ A
(NC4) s+ s'As” (NC5) s+ JR.s' (NC6) s+ s,

where ¢ € N;, RC Ny, {s,s',s"} C Ns and A € N¢.

We use the term negative constraints to refer to constraints of the form (NC6) and positive
constraints for constraints of the form (NC1)-(NC5). Clearly, each set of positive constraints is
automatically stratified.

We can indeed rewrite parts of SHACL into this restricted, normalised, form of SHACL, as
formalised below.

Proposition 5.8. Fach set of constraints C can be translated in time polynomial in |C|, into a
set of constraints C' in normal form such that for all G and each Horn-ALCHIQ knowledge base
(T, A), we have (T, A) validates (C,G) iff (T,.A) validates (C',G).

In particular, the above statement holds for 7 = 0, that is, the standard case of SHACL
validation, without ontologies. Furthermore, normalising a set of constraints in the way described
below does not influence it being stratified or not.

Proof. We extend the results for normal forms of [3] and [27]. That is, we first recursively introduce
fresh shapes for sub-expressions that appear in constraints, as in [3].

Next to that, we also allow shape names to appear as heads in multiple constraints, which
means that s < ¢ V ¢’ can be replaced by s < ¢ and s < ¢’ without affecting validation. Now,
what is left to show is that also constraints of the form s - cAeq(E, E'), s + cAdisj(E, E’) and
s < JE.s' can be translated into constraints in normal form in polynomial time. The last case,
s+ JE.s', we already covered in [27], but is repeated here for completeness.

e s + JE.s’. Suppose M = (Q,%,q;, A, qr) is the automaton recognising E. Take fresh
shape names s, for each ¢ € Q U Q' and add the following constraints
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$ 4 8¢,
sq ¢ sy if (¢,7,q') € A
Sqp 5.

Here, the idea is to encode the states of the automaton in the set of shape names. However,
we do not consider them in the standard initial state towards final state mode, but the other
way around. In the end, the idea is that we let every state that is an s’ be a final state, and
see whether we can work our way back through the automaton to an initial state. Thus, we
find that a node is assigned s,, iff that node has an E-path to a node that is an s'.

o s < cAeq(E,E"). Suppose M = (Q,%,q1,A,qr) and M’ = (Q', %, ¢}, A’, ¢f) are the
automata recognising E and E’ respectively, such that Q N Q" = (). Take fresh shape names
Serror, Snoerror Sposs Sneg, and sq for each ¢ € Q U Q' and add the following constraints

Sq ¢ if 54 € {8q:5q,}

Sq  Ir.s, if (q,r,¢") € AUA/
Spos < Sq if 54 € {S¢ps 8¢}
Sneg 4 TSq if 54 € {Sgps 8¢}
Serror €= Spos N\ Sneg

Serror < IT.Serror ifred

Snoerror = TSerror
8 < Sq A Snoerror-

In this case, because of the ‘guard’ ¢, there is only one node considered to be the initial state
of both automata. From there, we assign the states using their encoding in shape names.
This time, we consider the states of the automaton from initial state towards, possibly, a
final state somewhere. After finishing assigning states, it is decided which nodes are the
final state of any of the two automata. The last thing to do is to see whether there exists a
node that is the final state of one of the two automata (thus being assigned s,,s), but not
of the other automaton (thus also being assigned s;,.,. The last thing to do is to bring this
information back towards ¢, with the constraints Sc,or <= I7.Seror for each r appearing in
the automata.

e s+ cAdisj(E, E’). Similar solution as s + ¢ Aeq(E, E’), but define the error shape s o
as Serror < Sqp N\ Sqt,-

Note that the automata can be constructed in polynomial time, which is a standard result in the
literature, see for instance [20]. &

6 Rewriting for positive SHACL

Now we will return to problem of SHACL validation in presence of ontologies. In Section 3, we
defined the semantics of SHACL in presence of ontologies as SHACL validation over the core
universal model. This was independent of the chosen semantics for SHACL. As we decided on the
least-fixed point semantics for SHACL in the previous section, it is now clear what the intended
meaning is of a knowledge base validating a shapes graph.

However, we also care about computability. To this end, we do not wish to materialise the
full, possibly infinite, core universal model. Instead, we will bring back SHACL validation over
the core universal model back to SHACL validation over the enriched ABox A7, as defined in
Definition 3.7, by rewriting the set of constraints. More precisely, given a TBox 7 and a set of
stratified constraints C, we want to compile 7 and C into a new set C7 of stratified constraints so
that for every ABox A consistent with 7, and every target G, we have

(T, A) validates (C, Q) iff Ay validates (Ct,G).
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This will be achieved by means of an inference procedure that uses a collection of inference rules to
capture the possible “propagation” of shape names in the anonymous part of the austere canonical
model. In the following, the rewriting procedure for SHACL without any occurrence of negation
is discussed, followed by the general case of recursive SHACL.

6.1 Rewriting Algorithm

The idea of the rewriting is that we can encode all reasoning of axioms in the constraints. The core
of our technique is an inference procedure that derives a set of quadruples (¢, P, Q, H), where ¢ a
2-type, as introduced at the start of Subsection 3.1. Intuitively, deriving (¢, P, Q, H) tells us that
an object that satisfies all concept names in 7 (t), and that satisfies all expressions (assumptions)
in P, and falsifies all expressions in ), must validate all shape names in H. Note that there may
be some overlap in the information stored in ¢ and P.

Definition 6.1. Let T, ¢, 3r.s, be basic shape expressions, for r € Ng, s € Ng, and ¢ € Ny.
Moreover, let ([ | R).[ | N be called a basic concept expression, for each R C Ng and N C N¢.

Syntactically, P and @) are sets of basic shape and basic concept expressions, whereas the set
H may only contain shape names in Ng.

Definition 6.2. A 2-type t is called a locally consistent if the following are satisfied.
e IfT=AMN...MA, C Band {4;,...,A4,} Cm(t), then B € m;(t), for i € {1,3}.

IfTE[IRCr and R C ma(t), then 17 € ma(t).
e fACVrBeT,Acm(t)and r € mo(t), then B € m3(t).
e f ACVYr.BeT, Acms(t)and r~ € ma(t), then B € m(t).

Recall that we are only considering consistent knowledge bases. As discussed in the preliminar-
ies, this means we may ignore all axioms containing ‘1’ in the universal model construction. On
the same note, there is also no need to consider those axioms in the following rewriting procedure.

Definition 6.3. Given a Horn-ALCHZQ TBox 7 and C a set of normalised constraints. Let
NZ: C N¢ be the (finite) set of concepts occurring in 7 or C. We let psatc 7 be the smallest set
of quadruples that is closed under the following rules.

1. If ¢t is a locally consistent 2-type, and @ is a set of basic shape expressions such that
for all A(|R).[1N € Q, we have (R,N) € succr(t) and not both R C my(t) and N C

m3(t), then (t,{T} U Q,Q,0) belongs to psatc , where Q@ := {I(|R).[IN | (R,N) €
sucer ((my(0,0.0). 3 TR). (1N £ Q).

2. If {(t, P,Q, H),(t,P',Q", H')} C psatc 7 such that I([R).[1N € Q iff I([TR).[1N € Q',
then (¢, PUP,QUQ’', HU H') belongs to psatc 7.

3. If s «+— S € C for some basic shape expression S and (t, P,Q, H) € psatc , then (¢, P U
({S}\ Nc¢),Q, H U {s}) belongs to psat; - when either

e S=¢, force Nyand c ¢ Q; or

o S=A, for Aem(t);or

e S =3r.s and r € ma(t) or there exists I(MR).(MN) € P such that » € R and Ir.s’ € Q.
4. If s+ 8" €C, (t, P,Q, H) € psate 7 and {s'} C H, then (¢, P,Q, HU{s}) belongs to psatc

5. If s« s1As2€C, (t,P,Q,H) € psate ;- and {s1,s2} C H, then (t, P,Q, H U {s}) belongs
to psate -

6. If s <~ 3MRs" € C, {(t,P,Q,H),(t', P",Q',H')} C psatey, R~ € ma(t'), P'N Ny =,
s’ € H and inv(t') € child(inv(t)) such that
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e J(NR).(NN") € P iff (R, N') € sucer(mi(t'),0,0) \ succr(t'); and
o {s"| 35" € P'} CH,

then (¢, P,Q, H U {s}) belongs to psatc 7.
In this definition, the first rule lets us add fresh quadruples.

Definition 6.4 (Rewriting Procedure). Given a Horn-ALCHZQ TBox T and C a set of nor-
malised constraints. Let C7 g be the set of constraints that contains C, and moreover, for each
(t,P,Q,H) € K and each s € H, the constraint

s N An N\ AN N\ XA N Y (1)

Aemy (t) AENI\my(t) XepP YeQ

Note that only () and not the full 2-type is taken into account when transforming a triple
into a constraint. This suffices as we are considering axioms in normal form. Thus, knowing
exactly which concept names are true in a node implies knowing exactly which structures may
appear in the anonymous tree structure with this node as its root. The next step is eliminating
the superfluous substructures of this anonymous tree, just like this happens in any core universal
model construction. This boils down to knowing exactly which of the substructures of depth at
most 1 are already present in the enriched ABox A. Dividing all relevant substructures in the
positive or negative set P and ) happens in the first rule. As P is subsuming the information
stemming from s (t) and m3(t), it does not have to be repeated in (1).

Example 6.5. Suppose T = {A C Jp.B, B C 3¢.C} and consider the following constraints C:

s+ dp.s s+ Jg.s s« s Ns"
s+ dp~.s s+ dq™.¢ s+ A
s+ C.

Let t = ({4}, {p},{B}) and ¢’ = ({B},{q},{C}) and recall the definition of the inverse of a
2-type: inv(t) = ({B},{p~ },{A}). Note that both inv(t), inv(t') and t4 := ({A}, 0, D) are locally
consistent 2-types. Thus, according to the first rule of Definition 6.3, the following quadruples
belong to psatc 7:

(ta,0,{3p.B},0), (inv(t),0,{3¢.C},0), (inv(t"),0,0,0).

Given these quadruples and following rule 3 (of Definition 6.3) multiple times, we can also derive
the following quadruples:

(ta,0,{3p.B},{s'}), (inv(t),{3p~.s'}, {3¢.C}, {s'}), (inv(t"),{3q.s'},0,{s,s"}).

The last quadruple may be updated to (inv(t'),{3q¢.s'},0, {s,s’,s"}) because of s + s A s".
Now rule 6 can be used based on s < 3q.s, (inv(t),{Ip~.s'},{3q.C},{s’'}) and the quadruple
(inv(t'),{3q~.s"},0,{s’, s"}) to infer that (inv(t),{Ip~.s'},{3¢.C}, {s,s'}) must belong to psate 1
too. Using this derived quadruple and the same rule, again based on s + 3Jr.s, we also find
(ta,0,{3p.B},{s,5'}) € psatc 7. Thus, the following constraint is contained in Cr y:

s AN-BA-CA-Tp.B.

Now let A = {A(a),p(a,b)}. The target we wish to validate is G = {s(a)}. It is now simple
to check that this target, s(a), is validated by considering the above constraint on A7, which
coincides with A in this example.

The other approach to test validation is to build can(T,.A), graphically depicted in 6.1, and
then check validation of (C,G). In this figure, the same notation is used as described in Example
3.2.

Tt is straightforward to check that can(T,.A) indeed validates (C,G), as required. Q@
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Figure 6.1: Austere Canonical Model can(T,.A), for A = {A(a),p(a,b)} and T = {AC Ip.B,BC 3q.C}

6.2 Completeness and Correctness

In the rest of this section, we will show completeness and correctness of the presented rewriting
technique to translate (positive) SHACL validation in presence of ontologies to plain SHACL
validation over the enriched ABox Ap. After that we aim further: in the next subsection, we
discuss how to handle stratified negation in the rewriting, followed by a section on how to achieve
a pure rewriting, that is, to plain SHACL validation over the original ABox .A.

For a quadruple p = (¢, P,Q, H) a shape name s € H and a fresh shape name s,, we define
the constraint s, as follows:

ss— N An AN —~An N\ XA N Y

Aemy(t) AeNI\m1(t) XepP YeQ

Note that this definition is very close to Definition 6.4. However, it has a different purpose. In
the following proofs, we will focus on validating s, instead of s. This makes the connection to a
certain quadruple precise. And clearly, if s,(c) is contained in some perfect assignment, also s(c)
is contained in that same assignment. We will use the notation CUs, to denote that the constraint
defining s, as above is added to the constraints in C.

Furthermore, we note that quadruples are designed to model the direct environment of a
node that is on the ‘border’ of the model under construction. More precisely, they model the
environment of ¢ in can¢ (T, .A) (sometimes shortened to Z|.|,) the approximation of the austere
canonical model, as defined in Definition 4.2. In this interpretation c is missing its successors. For
this reason, we will evaluate s,(c) specifically on can|o(7,.A). When proving this in general, it
definitely also holds for all ¢ such that |c| = 0, or put differently, all ¢ € Nj.

To clarify which shape atoms depend on others, we consider the immediate consequence oper-
ator, defined in Definition 5.2. Where ‘depending’ is intended in the sense that s(c¢) depends on
§'(c) and s”(c) in case of the constraint s < s’ As”. Recall that the perfect assignment for positive
constraints consists simply of the least fixed point of this operator. With all this machinery, we
can demonstrate how the rules in Definition 6.3 can mimic all these types of dependencies. In this
way, we show first the completeness, and then, in Proposition 6.8, the correctness of the rewriting
for positive constraints.

Proposition 6.6. Given a Horn-ALCHZQ TBox T and C a set of positive, normalised con-
straints. Then for every target G and every ABox A that is consistent with T, we have that if
(T, A) validates (C,G), then cang(T,.A) validates (C1,G).

Proof. Tt suffices to prove the following claim, which will be shown by induction on n.

Claim 6.7. Let Z; = cani(T,A) and S, = Tean(r,a),c 1" (0). If s(c) € Spy1, there exists a
quadruple p = (t, P,Q, H) € psatc ;- such that s € H, s,(c) € Tz, c7us,(Sn) and furthermore:

1. ’ifC S N(T,.A) \N], then
(a) t = inv(tail(c));
(b) P2 {3(NR).(MN) | (R, N) € sucer((m1(¢),0,0)) \ sucer(t)} and PN Ny = 0;
(c) @ 2{3(NR).(NN) | (R, N) € sucer((m(t),0,0))};

2. if c € Ny, then

(a) t = ({A € N¢c | Alc) € Ar},0,0);
(b) P2 {3(NR).(NN) | (R, N) € sucer(t),c € (3(MR).(MN))A7} and (PN Np)\ {c} = 0;
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(¢c) @ 2 {3(MR).(NN) | (R, N) € sucer(t),c ¢ (3(MR).(MN))A7};

For (n = 0), note that either s <~ ¢ € C or s + A € C. In the first case, p = (t, PU{c}, @, {s})
can be constructed by performing rule 1, followed by rule 3, where ¢ as above and P and @ the
smallest sets that satisfy the criteria. Removing {c} from the second entry in the quadruple suffices
for the second case. It is then easy to check that indeed s,(c) € Tz, crus, (0).

Now suppose s(¢) € Sy 41\ Sp. In this induction step, we will only focus on the case s(c) got
derived from s « dr.s’ € C and §'(d) € S,,, for some r-neighbour d of ¢, as the other derivation
options are reflected in a straightforward way in the rules of Definition 6.3. We distinguish two
cases: |d| < |c|, which we call ‘upwards’, and |d| < |¢|, which we call ‘downwards’.

For the upwards case, if |d| < |¢| then either there exists a 2-type t such that dt = ¢ and
r~ € ma(t), or {¢,d} C Nj.

e dt = c. By rule 1, we find (inv(t), P,Q,0) € psatc 7, such that 1b and lc of the claim are
satisfied. With rule 3, recalling that we assumed s < 3r.s’ € C, we can update this quadruple
to find p = (inv(t), PU{3r.s'},Q,{s}) € psate 7. As s'(d) € Sy, it is straightforward to see
that s,(c) € Tz, crus,(Sn), which concludes this case.

e {c,d} C N;. Again, by rule 1, we find (t, P,Q,0) € psatc 7, where t = ({A € N¢ | A(c) €
Zo},0,0) and such that 1b and 1c of the claim are satisfied. Applying rule 3, means that
also p = (t, PU{3r.s'}, Q, {s}) € psate +. With similar reasoning as in the previous case, it
is clear that indeed s,(c) € Tz, c,us,(Sn)-

In the second case, downwards, we have |d| > |¢|, that is, ¢t’ = d, for some 2-type t’. In the
following argument, we assume ¢ € N7 1)\ Nz, but a similar argument works for ¢ € N;. So, as we
assumed that s'(d) € S,,, we can apply the induction hypothesis to find p’ = (inv(t'), P’,Q’',H') €
psatc 7 such that (i) = € ma(inv(t')), (ii) P'N Ny = 0, (iii) ' € H', (iv) I(MR).(MN) € P’ iff
(R,N) € succr((m1(t'),0,0)) \ succy(t'). Furthermore, by construction of elements in N1 4, we
find ¢ € childy(tail(c)). This means that to perform rule 6, we only need a second quadruple
(t, P,Q, H) for which we have to ensure that {s” | Ir".s" € P’} € H.

So, suppose Ir”.s” € P’. Since, by induction hypothesis, s,/ (d) € TI‘d‘,CTUsp/(Sn)a we know
s"’(¢) € Sp. Thus, we can also apply the induction hypothesis to s”(c), to find that pg: =
(inv(tail(c)), Psr, Qqr, Hyr) € psate 7 such that Py and Qg satisfy the constraints in 1b and
lc of the claim we are currently proving, and s” € H,. Furthermore, we find that s, ,(c) €
TI\C\,CT(SH)'

For each 3r".s"”
conclude

€ P', we can construct such a quadruple s, and combine them with rule 2 to

p" = (inv(tail(c)), U Py, U Qs U Hgi) € psate 7,

Jr!’.s""e P! Jr!’.s" P’ Jr’.s" P’

which can serve exactly as the quadruple we were looking for to apply rule 6, which we also do.
Thus, we find that

p = (inv(tail(c)), U Py, U Qs U Hyr U{s}) € psatc 1,

Ir!’ s eP’ Ir’.s"e P’ Irt.s"e P’

too. Note that this quadruple satisfies all properties requested in the claim, which naturally
follows from the point that all ps» satisfy these properties. Furthermore, note that s, (c) €
Tz, crus,. (Sn) holds, because for each 3r”.s” € P’, we have s, ,(c) € TI\C\,CTU%Q,, (Sn). Thus,
we can conclude that s,(c) € Tz, crus,(Sn), as required. &

In case {s” | Ir".s" € P'} = (), the above does not work. Instead, we can simply ap-
ply rule 1 to construct the required p = (¢, P,@Q, H), such that P = {3(NR).(MN) | (R,N) €
sucer((m1(t),0,0)) \ sucer(t)} and Q@ = {3(MR).(MN) | (R,N) € sucer((m1(t),0,0))}. Then a
simple argument suffices to show that s,(c) € Tz, crus,(Sn), which concludes the induction
step. &
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Proposition 6.8. Consider a Horn-ALCHZQ TBox T and C a set of positive, normalised con-
straints. Then for every target G and every ABox A that is consistent with T, we have that if
cano(T, A) validates (Ct,G), then (T, .A) validates (C,G).

Proof. We consider the following claim. Taking ¢ = 0 suffices to conclude the above proposition.

Claim 6.9. Let Z; = can;(T, A). If p= (t,P,Q, H) € psate + with s € H and s,(c) € PA(CT U
{sp},Ti) for some c € N 4y such that |c| = i, then s(c) € PA(C, can(T,A)).

We show this by letting 7 decrease step-by-step until reaching 0. Note that because we are
considering a least-fixed point computation and C C Cy, there must exist an ¢ = n such that the
above naturally holds.

Assume i = n — 1. Suppose that s,(c) € PA(CT U {s,},Z,-1), such that |c| = n —1. The
proof is based on unwinding how p got constructed, by an induction on the construction. Without
loss of generality, we can assume s got added to H in the last rule applied. Now suppose the
last rule applied was rule 6 (the others cases are rather straightforward). Thus, there exists some
s < 3r.s’ € C and moreover we find that {(t, P,Q, H \ {s}), (', P',Q', H')} € psatc 7, such that
s’ € H'. Let p) = (t',P',Q', H') and note that because we were able to perform rule 6, we can
conclude that s/, (ct') € PA(CT U {s}, },Z,); by construction of the austere core model, it is clear
that in Z,, the node ct’ satisfies exactly all concept names mentioned in 71 (¢'); if 3([ | R).[ | N € P,
it follows that R C m2(t') and N C 75(¢'); and if 3r'.s” € P, then s” must be contained in H,
which means we can first perform this same proof on s” and the quadruple (¢, P,Q, H \ {s}) to
conclude that s”(c) € PA(C, can(T, A)), and thus s”(¢) € PA(Cr,Z,) by Proposition 6.6. This
means that indeed ct’ € (3r.s")T?, as required. As ct’ will not have any successor nodes in Z,,,
the conditions posed by @' are enforced too.

Combining s, (ct') € PA(CTU{s), },Z,) with assuming the claim holds for i = n, we derive that
§'(ct’) € PA(C, can(T,A)). Since s « Ir.s’ € C, and r~ € ma(t') we find s(c) € PA(C, can(T,.A))
too, as required. &

These results can be summarised in the following way.

Theorem 6.10. Given a Horn-ALCHIQ TBox T and C a set of positive, normalised constraints.
Then for every target G and every ABox A that is consistent with T, we have that (T, A) validates
(C,G) iff Ay validates (C1,G).

7 Rewriting for Stratified SHACL

We now extend the rewriting to constraint sets C with stratified negation. Intuitively, this is
done by running a saturation procedure in the rewriting for each stratum of C, starting with
the lowermost. For the transition to the next stratum in the rewriting procedure, we need to
ensure that the outcome of the saturation at a non-topmost stratum is completed with negative
information. To this end, we w.l.o.g. assume that all constraints from C with the same shape name
on the left-hand-side occur together in the same stratum.

We will operate again on quadruples (¢, P, Q, H), which are similar to the ones in the previous
section, except that H might additionally contain expressions of the form —s for a shape name s.
For a set K of such pairs, we say (t, P,Q, H) is mazimal in K, if (t, P,Q, H) € K and there is no
H' D H with (¢, P,Q, H') € K. Then the notion of completion is defined as follows:

Definition 7.1. The completion compcj(K) of a set K of quadruples w.r.t. a Horn-rALCHZQ
TBox 7T and a set of constraints C is a set, defined as follows:

compe +(K) ={(t,P,QUQHUH) | (t,P,Q,H) is maximal in K},

where B
H:={-s|soccursinC,s ¢ H}

Q ={3rs|s+IrseCsgH}U{c|s+cel,s¢ H}.
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We need to augment the inference rules of the rewriting procedure for positive constraints with
an additional rule to handle constraints of the form s <— —s’. Furthermore, rule 6, is updated to
also consider the newly added information to ). Note that using the following updated definition
of sate 7 (K) will give the same results as the previously defined satc 7 (K) in definition 6.3 on the
first stratum, as the proposed changes do not have any effect when no —3r.s’s or —s’s are present
in the quadruples.

Definition 7.2. Given a Horn-ALCHZQ TBox 7T and C a set of normalised constraints. We let
sate,7(K) be the smallest set of pairs containing K closed under rules 2-5 defined of Definition
6.3, where ‘psat. ' is replaced by ‘satc 7(K)’, and additionally under the following rule 6" and 7:

6. If s < Irs € C, {(t,P,Q,H),t',P',Q',H")} C sater(K), r~ € m(t'), PN Ny = 0,
s’ € H' and inv(t') € child(inv(t)) such that

e I([1R).[1N € P iff (R,N) € succr(m(t'),0,0) \ sucer(t');
° {S/, | 37,,//.8/[ E P/} U {_‘s// ‘ 37,,//.8// G Q/7T.//7 6 7r2(t/)} g H’
then (¢, P,Q, H U {s}) belongs to satc 7(K).

7. If s < -’ € C and (¢t,P,Q,H) € sate7(K) such that =s’ € H, then (¢t,P,Q,H U {s})
belongs to sate 7(K).

Now can we define the inference procedure that processes strata from the lowest to the top-
most, performing saturation using the updated set of rules at every stratum, interleaved with a
computation of the completion in between.

Definition 7.3. For a TBox 7 and a constraint set C with stratification Cy,...C,, we let Ko =
psate, 7 and for each 0 <7 <n

K; = sate, T(compe, , 7(Ki—1)).
We let Cr = Cr k,,, where Cr g, is defined as in Definition 6.4.
Example 7.4. Suppose T = {A C Jp.B} and consider the following set of constraints
Co = {sc + C, s’ < Ip.sc}
Cy ={s" «+ Ip.—sc, s+ s NS}

We consider the following two 2-types in the rest of this example: t4 := ({4},0,0) and ¢ :=
({4}, {p},{B}). Because of rule 1, we find that the following two quadruples are contained in Ky:

(ta,0,{3p.B},0), (inv(t),0,0,0).

Here, the first one can be updated to (ta,{3p.sc}, {Ip.B},{s'}). Note that all three quadruples
are maximal in Ko, which means we find the following quadruples in comp¢, 7

(ta,0,{3p.B,3p.sc}, {—s'—sc}),
(tAv {Hp.Sc}, {HpB}, {S/a _'SC})7
(inv(t),0,{3p.sc},{—s', ~sc}).

By definition, these quadruples are also contained in K7, which means we can apply rule 6’ to the
last two and the constraint s” < Jp.—s¢g, to find

(ta,{3Ip.sc}, {3p.B},{s',~sc,s"}) € Ky

too. After applying rule 5 based on the constraint s < s’ A s” € C; we can extract the following
rewritten constraint:

s« AN-BA-CAIp.scA—-Ip.BeClr,
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Now let A = {A(a),p(a,b),C(b)} and set the target to G = {s(a)}. As A= Ar, we indeed find a
positive answer when validating (C7,G) over Ay. Notice can(T,.A) corresponds to the canonical
interpretation of {A(a), p(a,b), C(b),p(a,at), B(at)}. Thus, we can conclude that (7, .A) validates
(C,G) too. Q

Given a stratified set of constraints C with stratification Cy,...,Cy, let C<; := Co U ... UC;.
Similarly, we will use C1 <; to denote Cr g, U...UCr K,.

Theorem 7.5. Given a Horn-ALCHIQ TBox T and C a set of stratified constraints with strati-
fication Cy, . ..,Cy. Then, for every target G and every ABox A that is consistent with T, we have
that (T, A) validates (C,G) iff At validates (Cr,G).

Proof. (=). We will prove completeness by proving the following claim by induction on 4

Claim 7.6. Let Z; = cani(T,A). For each ¢ € N7 4y and for each 0 < i < n, there exists
p=(t,P,Q,H) € K; that is mazimal in K;, and moreover:

1. ifC S N(T,A) \N], then
(a) t = inv(tail(c));
(b) P2 {3(R).[1N | (R,N) € succr((m1(t),0,0)) \ sucer(t)} and PN Ny =0;
(c) Q 2{3([TR).TTN | (R, N) € sucer((mi(t),0,0))};
2. if c € Ny, then
(a) t=({A€ Nc|Alc) € Ar},0,0);
() P2 {3(MR).MN | (R,N) € sucer(t),c € AR).[TN)AT} and (PN Np) \ {c} = 0;
(c) Q 2 {3(MR).MN | (R, N) € sucer(t),c & QM R).[TN)A7};
3. H={s|s(c) € PA(can(T,A),C<;)} U{-s| s(c) & PA(can(T,A),C<;),s defined in C;_1};
4. and s,(c) € PA(Z.,Cr,<i Usp).

Analogous to Proposition 6.6, it follows that for each s such that s(c) € PA(can(T,.A),C<o),
there exists a quadruple (¢, Ps,Qs, Hs) € sate, 7(0) = Ko such that s € Hy and such that
requirements 1, 2 and 4 of the claim hold. Now let X = {s | s(¢) € PA(can(T,.A),C<o)}.
Then, following rule 2 of the rewriting algorithm in Definition 6.3, we must conclude that also
(t, Usex Ps,Usex @s,Usex Hs) € Ko. This quadruple is exactly the quadruple we were looking
for: requirements 1, 2 and 4 have to be satisfied, as they are satisfied for each (¢, Ps, Qs, Hs)
separately; requirement 3 follows, as s € H, implies X C |J .y Hs, and at the same time the
correctness of the rewriting forbids that Hs\ X # ). In the same way, maximality of the quadruple
is implied.

For the induction step, ¢ = j + 1, note that for each ¢ € Ny U N(7 4), we are given some
(t,P,Q,H) € K, that is maximal and satisfies requirements 1 to 4 for ¢ = j. As this quadruple
is assumed to be maximal, completion compe, 7 can be applied to (¢, P,Q, H). Thus, we find
(t,P,QUQ',HUH) € K; 1. Since s € H iff s(c) € PA(can(T,.A),C<;), it must follow that ~s € H
iff s(c) ¢ PA(can(T,A),C<;) and s occurs in C<;. Now suppose s(c) € PA(can(T,A),C<jt1) \
PA(can(T,A),C<;), then there must exist a constraint s <— C' € C that caused this addition.

If C = —¢', then s’ is defined in C<; by the stratification rules, and s'(c) ¢ PA(can(T,A),C<;),
which means —s’ € H, thus rule 7 can be applied to conclude that (¢, P, QUQ', HUHU{s}) € K, 1.
If C is any of the other options, the same reasoning as in the proof of Proposition 6.6 can be used.

Now all that is left to show, is that each Y € @’ is not blocking the satisfaction of restriction 4.
By taking a closer look a the completion procedure, we see that Y = 3r.s’ for some s +— Ir.s’ € C<;
such that s € H, or Y = ¢, for some s < ¢ € C<j and s ¢ H. For both cases, note that s ¢ H, which
means s(c) € PA(can(T,A),C<;). Assuming that any of these Y is indeed blocking restriction 4,
directly leads to a contradiction with the previous observation. Thus, we have indeed found the
required quadruple.
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(«). Again, let Z; = can;(T,.A). To show correctness, we will show by induction on ¢ that for
each ¢ € N(7 4y and for each p = (t, P,Q, H) € K; such that (a) s,(c) € PA(Z¢,C1,<i U s,), we
find for each s € H that s(c) € PA(can(T,A),C<;).

First, note that Proposition 6.8 provides the induction basis. So, for the induction step, suppose
we are given some ¢ € Ny ) and (¢, P,Q, H) € K;1; such that (a) holds. We will focus on the
case that there exists a (¢, P,Q’, H') € K; that is maximal in K;, such that (¢, P,Q, H) is the
result of first applying completion to (¢, P,Q’, H') to find (t,P,Q' UQ",H' UH') € compe,
followed by application(s) of rules 3-5, 6’ or 7. Here, we will only consider the result of applying
rule 7, as the treatment of the application of the other rules is very similar to what is discussed in
Proposition 6.8. Note that rules 1 and 2 are not really having any relevant effects after finishing
the first stratum.

So, assume s < s’ € C;41 and —s’ € H'. We argue that each s’ + C' € C cannot be used to
deduce s'(c) € PA(can(T,A),C<;).

e C € Ng. If C € m(t), we would have found s’ € H' by maximality of (¢, P,Q’, H').
Thus, C' ¢ 71(t), which means —C' appears in s pg ). Since (a) holds, this means that
c & Ccon(T-A) which suffices.

e C € N;. As =s' € H', we find C € Q. Since (a) holds, this means C ™74 £ cean(TA)
which suffices.

o Ce{s s"Ns"|{s, "} C Ng}. Perform this same argument for s” or s”/. As we are
considering a least-fixed point semantics, this regression must terminate.

e C = 3rs”, for some r € Np, s € Ng. As =s' € H’, we find C € Q. Note we derived
completeness and correctness of all strata up till 4, that is for all s, for all natural numbers
n, and all ¢ such that |¢| < n, we have s(c) € PA(can(T,A),C<;) iff s(c) € PA(Z,,Cr <i).
Thus, combining this with (a), we find that in any case s”(d) ¢ PA(can(T, A),C<;), for
dt = ¢, such that r— € ma(t).

The other option we have to exclude is d = ¢t, for some r € my(t). For contradiction,
assume s”(d) € PA(can(T,A),C<;). So we know there must exist a quadruple pg =
(inv(t), Pq,Qq, Hy) € K; such that s” € Hy and s,,(d) € PA(Z)4,C<i7 U s,,), and such
that these there does not exist (inv(t), P}, Q), H)) € K, with the same properties, but
{3r.s € P,}| < |{3r.s € Py}|. First of all, note that {-s | Ir.s € Qq} C H; for all such s, we
have —s ¢ H, implies s € H. Thus, s(c) € PA(can(T,A),C<;) by induction hypothesis. Us-
ing completeness and correctness, this implies s,,(d) & PA(can)q (T, A),C<i7Us,,), which
is a contradiction.

Now there are two options: if {s | Ir.s € Py} C H, then rule 6’ could have been applied on
s’ « 3r.s” at a certain point, which is in contradiction with the maximality of (¢, P,Q’, H').
So, we are left with the second option: {s | Ir.s € Py} ¢ H. Now we can repeat this
same argument for each member of {s | Ir.s € Py} \ H. Because we are solely considering
the least amount of Jr.s’s in Py, we know they all are essential in deriving s”(d). Thus,
s"(d) € PA(can(T,A),C<;) for all d such that (c,d) € ()74 which automatically
implies the required result.

o C =" If s+ =8’ € Ciq1, then s’ < —s” € C<;, by definition of the strata. This means
that —s” cannot be part of H’. So, to apply rule 7, it must be that —s” € H’. However,
this is in contradiction with the maximality of (¢, P, @', H') that would imply s’ € H’, which
concludes this case.

Thus, we must conclude that s'(c) ¢ PA(can(T,.A),C<;), from which follows that indeed s(c) €
PA(can(T,A),C<i+1), as required.
&
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8 Pure Rewritings

Theorem 7.5 lets us reduce SHACL validation in the presence of Horn-ALCHZ TBoxes to plain
SHACL validation over the completed ABox A7. In this section we discuss how to update this
rewriting to a pure rewriting. That is, how to produce a set of constraints C’, in a data-independent
way, such that (T, .A) validates (C,G) iff A validates (C',G).

To make the rewriting pure, we have to encode the information added to A by the immediate
consequence operator T7 defined in Definition 3.7 in new constraints. However, SHACL as intro-
duced in [33] can only propagate information on nodes, and information about the properties/roles
connecting the nodes cannot be directly represented.

We discuss two ways around this. First we present a solution for TBoxes that do not contain
counting axioms (A C<; r.B). The role information added to A7 in this case is simple, and it
can be directly derived from locally satisfying axioms of the form r¢M...Mr, C r. For the general
case, we extend SHACL and enable it to describe edges, rather than just nodes.

Without loss of generality, we assume in this section that there are no cycles over role inclusions.
That is, no TBox contains a set of role inclusions of the form {r C ry,7y C rq,...,r, C r}. If such
a cycle exists, then all roles names appearing in the cycle are replaced by one unique role name.

8.1 Rewriting for normalised Horn-ALCHT

So, let us first focus on how to define a pure rewriting for normalised Horn-ALCHZ.

Definition 8.1. A Horn-ALCHZ TBox T is in normal form if each of the concept inclusions in
T are of one of the following forms:

(F1) Ayn...MA,CB (F3) ACVr.B
(F4) AC3r.B,

for {4, Ay,...,A,, B} Qﬁc and r € Ng. Furthermore, 7 may contain role inclusions of the
form r C 7/, for {r,r'} C Ng.

For each Horn-ALCHZ TBox T, we define the following set of constraints, capturing most of
the information derived by the immediate consequence operator T, defined in Definition 3.7.

Definition 8.2. For each A € N, we let s4 € Ng be a fresh shape name. Given a Horn-ALCHT
TBox T, let T be the smallest set of constraints containing for each 7 = AgM...M A, C B, the
constraint

S /\ SAi€7;, (2)

0<i<n
furthermore, for each A CVr.B € T and 7 = S C r the constraint
sg < 35S .54 €T, (3)
and for each A € N¢, the constraint
sa+ AeT,. (4)

Definition 8.3. Given a Horn-ALCHZ TBox T, let C;’- be the set of constraints consisting of the
constraints in Cy, taking into account the following alterations:

e cach concept name A € N¢g appearing in an axiom in Cy is replaced by s4; and

e for each 7T =[]R C r, such that RU{r} C R, and [ | R’ appears in some constraint, [ | R’
is replaced by [ R’ \ {r}.
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Note that when considering C; U7 instead of C, we are introducing a new lowest stratum: the
set of freshly introduced constraints, based on existing concept names. However, the only point of
this stratum is to mimic exactly which concept names hold at which points in the enriched ABox
A7, defined in Definition 3.7.

Proposition 8.4. Given a Horn-ALCHZ TBox T and C a set of positive constraints. Then for
every target G and every ABox A that is consistent with T, we have that cano(T,.A) validates
(C7.,G) iff A validates (CFUTs,G).

Proof. Note that cang(T,.A) corresponds to A7, the first layer in building the austere canonical
model, defined in Definition 3.7. In this definition, the ABox is completed in a least-fixed point
manner under certain axioms (AgM...M A, C B and A C Vr.B) that are precisely encoded in
constraints of the form (2) and (3). The only difference is that we cannot translate axioms of the
form 7 = S C »' directly. A simple fix suffices: deleting all roles that may be derived from the
constraints. As we are also considering a least-fixed point semantics for SHACL validation, the
above result directly follows. &

Thus, considering C; U7, as rewritten set of constraints indeed provides us with a pure rewrit-
ing. The following theorem follows from combining the results of Theorem 7.5 and Proposition
8.4.

Theorem 8.5. Given a Horn-ALCHZ TBox T and C a set of stratified constraints. Then for
every target G and every ABox A that is consistent with T, we have that (T, A) validates (C,G)
iff A validates (CF,G).

8.2 SHACL’

For full Horn-ALCHZQ, we propose a different solution: we define an extension of SHACL that
we call SHACL?. Here we also allow ‘binary’ shape constraints b: we can also express constraints
on pairs of nodes.

Definition 8.6. Let SHACL® consist of shape constraints of the form s < ¢, or b < 1, for
{s,b} C Ng, such that

pu=cls|AleNp|-p| e
Yu=sT[b|r YUy YNy [ ¢-¢|¢7 v [\,
where ¢ € Ny, {s5,b} C Ng, A € N¢ and r € Nr. We evaluate SHACL® as defined in Figure 5.1,
extended with
{ee AT |3’ € AT : (e,e!) € (P)TS A€ € (9)5}
{(e;e) € AT x AT | e e 55}
(0)55 .= {(e, ') € AT x AT | b(e,€') € S}
(

(,(/) U w/ s .__ w)I,S U (w/)I,S

(W )55 = () 0 ()

(w 'd)/ s ._ {(6,6/) c AI > AI ‘ 3’ e AI . (6,6”) e (,(/))I,S A (6”,6/) c (w/>I,S}
W5 = {(e,e') € AT x AT | IH{eg,...,en} CTAT:

Vi {0,...,n1}: (es,ei01) € (W) Neg =eNe, =€}
W) = {(e,¢') € AT x AT [ (¢ e) € ()"}
WA\ )5 = @)\ ()"
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JRe=3(roN...N7).0
eq(E,E')=-3.(E\E").TA-3.(E'\ E).T
disj(E,E') = -3(ENE").T
where R=1rgM...Mr,.

Definition 8.7. Define s4 € Ng and b, € Ng to be a fresh shape names for each A € Ng,
respectively r € Ng. Given a Horn-ALCHZQ TBox T, let 75 be the smallest set of binary
SHACL constraints containing for each 7 |= AgM...M A,, C B, the constraint

SB /\ sa, €T, (5)

0<i<n
furthermore, for each A E Vr'.B € T the constraint
s+ db.—.s4 €T, (6)

also, for each T E AgM...MA, E3(roN...Mry,).BoM...M B, and A C<; r.B € T such that
r€{ro,...,rm} and B € {By,..., B}, the constraints

{by, < §7-b, - sB7, S SANSA,N...NSa,, (7
SB; S SANSA, N...\Sa, /\H(brl N ...ﬂb,«m).sB} CTs, (8)
for each ¢ € {0,...,m} and j € {0,...,k}, and a fresh shape name §, furthermore, for each

r C r’ € T, the constraint
by b, €T, (9)
and for each 7 € Ny, p € Ny the constraints
{by <, by < (bp) ™, bp < (bp,-)"} C T, (10)
and, lastly, for each A € N, the constraint
sa+— AeT,. (11)

Note that we are not using the full expressivity of SHACL® to produce a pure rewriting.

Proposition 8.8. Given a Horn-ALCHZQ TBox T, then for each A, we find that for all A € N¢,
allr € Ng, and all {c,d} C A4,

o A(c) € At iff sa(c) € PA(T:, A);
e r(c,d) € Ay iff b.(¢c,d) € PA(Ts, A).

Proof. Let TJ consists of the constraints in 7 defined by (10) and (11). Then, it is clear that
A(c) € Aiff sa(c) € PA(TS, A) and r(c,d) € A iff b.(c,d) € PA(TS, A). This means that all
information of the ABox can be precisely captured in shape names. Furthermore, all rules building
A7 from A via a least-fixed point computation are exactly captured in the constraints defined in
(5) to (9). As the perfect assignment PA is also based on a least-fixed point semantics, the result
follows. &

The completeness and correctness of the full rewriting now directly follow. Clearly, we con-
cluded that all information in A, albeit in the form s4 and b,, can be derived by to this end
designed SHACL? constraints. Therefore, there is not really a difference between evaluating Cr
over A7, or C+ U7, over A, except that we should replace concept names and roles by their shape
names referring to them.
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Definition 8.9. Given a Horn-ALCHZQ TBox T, let C;C be the set of constraints consisting of
the axioms in Cr, such that each concept name A € N appearing in an axiom in Cr is replaced
by s, and similarly, each » € Ny by b,.

Now that the concept and role names are replaced by their shape equivalents, we have indeed
produced a pure rewriting.

Theorem 8.10. Given a Horn-ALCHIQ TBox T and C a set of stratified constraints. Then for
every target G and every ABox A that is consistent with T, we have that (T, A) validates (C,G)
iff A validates (CFUT;,G).

9 Complexity Results

We now discuss the computational complexity of SHACL validation in the presence of Horn-
ALCHIQ TBoxes. Specifically, we discuss the combined complexity and the data complexity of
the problem [30]. The former is measured in terms of the combined size of all input components,
while the latter is measured assuming all components except the ABox are of fixed size.

Theorem 9.1. The problem of SHACL wvalidation in the presence of Horn-ALCHZIQ TBoxes is
EXPTIME-complete in combined complezity and PTIME-complete in data complezity.

Proof. For data complexity, the PTIME lower bound was shown in [3], which already applies in the
absence of ontologies. The matching PTIME upper bound follows from Theorem 7.5, combined
with the fact that A7 has size polynomial in A’s size itself, and that validation under stratified
constraints without ontologies in feasible in polynomial time in data complexity [3]. We note that
checking whether the input graph is consistent with a TBox can also be done in polynomial time.

For the upper bound in combined complexity, we rely on the rewriting algorithm discussed
in Sections 6 and 7. Let (7,.A) be a normalised Horn-ALCHZQ knowledge base and C any
set of (stratified) constraints. Observe that the number of different quadruples (¢, P, @, H) over
the signature of 7 and C that can be added to any K; during the rewriting is bounded by an
exponential in the size of 7 and C. An application of any of the rules takes polynomial time in the
size of T, A, C and J,- o K, which means the application of all rules in the procedure is bounded
by an exponential in the size of 7, A and C. Computing C7 g is polynomial in the size of K, for
all possible K. Thus, overall we get a procedure that runs in exponential time in the size of 7, A
and C.

The hardness result in combined complexity follows from the hardness of reasoning in the
ontology alone: checking whether an atom of the form r(a,b) or A(a) is implied by a knowledge
base is already EXPTIME-complete in combined complexity [17]. &

The hardness inherited from the ontology alone is not the only source of complexity. ExpTIME-
hardness holds even for very weak description logics like DL-Liteg and a very simple fragment of
SHACL.

Define a simple shape expression ¢ in the following way

pu=s|AloNe|Ire,

for s € Ng, A € N¢ and r € Ng. Shape constraints in simple-SHACL are then build in the same
way as for regular SHACL by using simple shape expressions instead of regular ones. All other
definitions extend in a straightforward way to simple-SHACL.

Theorem 9.2. Let L be any DL that support axioms of the forms A T Ir. T, Ir1. T T dry. T
and ry © ro. In the presence of L TBoxes, simple-SHACL wvalidation is EXPTIME-complete in
combined complezity.

Proof. Membership follows directly from Theorem 9.1. To prove EXPTIME-hardness in combined
complexity we reduce the word problem of polynomially space-bounded Alternating Turing Ma-
chines (ATMs) to validating shapes under an X ontology.
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An ATM is defined as a tuple of the form
M= (27 QH, QVa 405 Qacey Qrej s 5)

where ¥ is an alphabet, Q3 is a set of ewistential states, Qv is a set of universal states, disjoint
from @3, qo € Q3 is an nitial state, gaec € Q3 U Qv is an accepting state and gr.; € Q3 U Qv is a
rejecting state, and 0 is a transition relation of the form

§CQx(XU{B}) xQx (XU{B})x {-1,0,+1}

with Q@ = Q3 U Qy. Here B is the blank symbolWe let 6(q,a) = {(¢',b,D) | (¢,a,q¢',b,D) €
d}. W.lo.g., we assume that in M, universal and existential states are strictly alternating:
if (g,a,q¢',b,m) € § and ¢ € Q3 (resp.,q € Qv), then ¢ € Qv (resp.,¢ € Q3). We fur-
ther assume that [6(q,a)| = 2 for all combinations of states ¢ € @ and symbols a € X. If
6((]’ (1) = {(qlv ai, D1)7 (q27 a2, DQ)}) we let 5@(qa a) = (CIl; ai, Dl) and 5T‘(q7 a) = (q27 a2, DQ)

A run of an ATM M on an input word w is defined as usual. We assume a word w =d; ---d,, €
¥* with n > 0 together with an ATM M that only uses the tape cells where the input word was
written, i.e., it only uses the first n cells. Checking if such M accepts w is an EXpTIME-hard
problem.

We show how to construct a knowledge base (7,.A) and (C, {s(a)}) such that M accepts w iff
(T, A) validates (C,{s(a)}). The reduction takes polynomial time in the size of M and w. It uses
the following symbols:

e a concept name Init and a shape name s,..;

e role names succ, succy, Succ,;

e shape names s, for all states ¢ € Q3 U q € Qv;
e shape names h; for all 1 <i <mn;

e shape names c((f) forallbe YU {B} and 1 <4 <n.
So, set A = {Init(a)} and let T contain the following inclusions:

Init T Jsucey. T succy & suce  dsuce™. T & dsuccy. T
Init © dsuce,. T suce, E succ  dsuce™. T E Jsuce,. T.

The interpretation can(7,.A) will provide us an infinite binary tree. In there, the root is repre-
senting the starting configuration of M and each child of a node represents a next step in the run
of the ATM M.

To mimic the start configuration, we define the following shapes:

hi < Init  sq, < Init c&? — Init forall 1 <i<n.

Intuitively, this is setting the starting state to go, (denoted by the shape name sy, ), putting the

head in the starting position (h;), and stating the starting symbol written on each tape cell (c;?).

The next step is to encode the transition relation of the M. For each 1 < ¢ < n, each
(g,a) € Q@ x (XU{B}), and v € {{,r} we add the following shapes, where (¢’,b, D) = 6,(q, a):

8q < Jsucey (sq A hi A cgi))

ng) < Jsucel (sq A hi A c((f))

hiyp ﬂsucc;.(sq A h; A cgf)).

Furthermore, the tape cells that are not under the read-write head have their content preserved.
Thus, for each 1 <i < j < n, add

¥« Fsuce™ (D A hy).

We now identify subtrees that represent accepting computations. For all ¢ € Q3 and all ¢ € Qv
we add the following:
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Sace £ Sqaee
Sacc ¥ 8¢ A\ Isucc.sqec
Sacc < 8¢ N\ 3succy.8gec A Fsucer.Sqce.

This concludes the reduction.
Claim 9.3. M accepts w iff can(T,.A) validates (C,{s(a)}).

To show left to right, suppose M accepts w. Thus, there exists a binary run tree of the
ATM such that, in an alternating manner, one of the subtrees resp. both subtrees are picked
such that on all branches of this subtree we will encounter the accepting state. One can show by
induction on the length of the run tree that there exists a one-to-one correspondence between this
run tree and can(7T,.A), also a binary tree, decorated with shape names. The idea is that each
node in can(T,.A) corresponds to a specific configuration of M such that the children of a node
corresponds with the two follow-up configurations of the considered configuration in M. Thus,
it is easy to see that (C, sqcc(a)) gets validated indeed. To show the other direction, the same
one-to-one correspondence can be exploited. &

10 Discussion and Conclusion

Beyond normalised Horn-ALCHZQ. In this article we considered Horn-ALCHZ Q TBoxes in
normal form. Unfortunately, we cannot easily lift the results to general Horn-ALCHZQ, as our
techniques are not immune to the usual normalisation procedures. For instance, the procedures
in [21] and [23] may significantly change the form of the universal core model; the fresh concepts
introduced during normalisation may force us to use different objects to satisfy axioms that would
otherwise be satisfied by the same object. We believe it is possible to obtain similar results for full
Horn-ALCHIQ, albeit with a more cautious normalisation and a weaker notion of homomorphism.
We leave the details for further work.

It would also be desirable to add transitivity axioms and thus cover the well-known Horn-
SHIQ description logic. But unfortunately, in the presence of transitive roles, the uniqueness
of the core universal model can no longer be guaranteed: take for instance A = {A(a)} and
T={AC3r.B,AC 3r.B',B C Ir.B’, B’ C 3r.B} where r is transitive. In this case, there are
two core universal models: a chain of r’s such that the concept names along this chain are A, and
then B and B’ in an alternating fashion, closed under transitive roles, and the version in which B
and B’ swap places. It is unclear what would be a good semantics when multiple core universal
models exist.

Towards full SHACL. Extending the considered SHACL fragment is also a promising avenue.
However, we first point that the ‘guard’ ¢ we introduced for constraints of the forms eq(E,r) and
disj(E,r), cannot easily be dropped. Without it, the normalisation as described in the proof of
Proposition 5.8 does not work well; there is no straightforward way to distinguish from which
starting point it was possible to reach a final state, as becomes clear in the following example.

Example 10.1. Let A = {r(a,c),t(b,c)}. Over this graph, we wish to check validation for the
constraint s < eq(r,t) with targets s(a) and s(c). Clearly, we expect non-validation. However,
this cannot easily be achieved by a similar rewriting technique.

To see this, let us consider the following constraints as, loosely following the construction
above to rewrite s « eq(r,t) and based on the automata M = ({¢,¢'},{r,t},¢,{(¢,7,¢")},¢") and
M ={q", ¢} {r,t},¢" {(¢",t,q")},¢"") we find the following constraints:

54 a 54+ ¢ Sq  Ir .5, Spos < Sq'  Sneg + 7S¢’
Sq —a Sq <— C Sq' <— E'ti,sq// Spos < Sq" Sneg < TSyl
Se < Spos N\ Speg  Se <+ Ir.se Se < dt.s, Snoe < T8¢ 84 84 A\ Spoc

32



where we shortened the names of the error-shapes to s, and s,,.. As b is reachable from starting
states a and ¢ by both an r and a ¢, b will only be assigned s, the shape name denoting being
the final state of at least one of the automata, not causing any error-shape s, to fire, which breaks
our expectation of non-validation. The problem is that we cannot distinguish which initial state
caused the positive outcome. Q

For non-recursive SHACL, it is known that adding path equality or disjointness increases
expressivity [10], but we don not know whether this also holds for recursive SHACL. In any case,
it seems hard to include full path equality and disjointness due their ‘non-local’ nature.

On the other hand, it might be possible to encode local counting constraints of the form J<,,r.¢,
after a careful examination of our techniques. Extending counting over roles to counting over
regular paths is even more interesting. It will be quite a challenge to also define a rewriting in which
the quadruples store information on counting over regular paths. However, as the anonymous parts
of the core universal model are tree-like, it might be possible to also achieve such a rewriting.

In parallel to increasing the expressivity of the considered shape expressions, we may also
consider richer targets. Additionally to shape atoms, the SHACL standard considers target classes:
if a concept name A is given as target, all nodes in the interpretation of A must validate the
given shape. For plain validation, without ontologies, class targets reduce trivially to sheer shape
atoms: the set of domain elements is known and can replace the class or concept name. But if
ontology axioms are given, this is a whole different story: the set of domain elements that forms
the interpretation of the target concept name is not known a priori. Nevertheless, under the
assumption that the input data graph is connected, it is possible to model this for s < ¢ with
target class A, by creating new constraints of the form “there does not exists a path (the Kleene
star of the union of all roles appearing) to an A that does not satisfy ¢”. Now any domain element
in the graph can be considered as the target to get a logically equivalent constraint. Clearly, a
similar trick works when it is known which parts of the graph are connected.

Finally, we would like to emphasise that allowing full negation would be a very nice, but
complicated challenge.

Conclusion. We have considered the validation of SHACL constraints in the presence of Horn-
ALCHIQ ontologies. To this end, we defined the semantics over a carefully constructed notion of
a canonical model that minimises the number of fresh successors introduced to satisfy the ontology
axioms at each chase step and which happens to be the unique core universal model. Moreover,
we have argued that this semantics is natural and intuitive. We proposed a normal form and a
rewriting algorithm for recursive SHACL constraints with stratified negation. It takes as an input
a SHACL shapes graph and an ontology, and constructs a new SHACL shapes graph (also with
stratified negation) that can be used for sound and complete validation over a slightly extended
version of the data graph alone, without needing to reason about the ontology at validation time.
We also discussed some approaches to even get to validation over the pure data graph. We showed
that, under our semantics, validation in the presence of Horn-ALCHZQ is complete for EXPTIME,
but it remains PTIME complete in data complexity, and hence it is not harder than validation of
stratified SHACL alone, without the ontology axioms.
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